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Abstract
Many measurable properties of crystalline binary A1−xBx alloys, such as
phase diagrams and excess thermodynamic functions, could be predicted via
lattice statistical mechanics methods if one knew the ‘configurational energy’.
The latter describes the energy at T = 0 for each of the 2N possible occupation
patterns of the N lattice sites by an A or a B atom. Traditional approaches
described the configurational energy either via empirically fitted, truncated Ising
Hamiltonians, or through highly approximated coherent-potential constructs.
We illustrate here the alternative approach of ‘mixed-basis cluster expansion’
which extracts from a set of ab initio local density approximation calculations of
the total energies of a few ordered A–B compounds a complete configurational
energy function. This method includes both pair and multibody terms, whose
number and range of interaction are decided by the variational procedure itself,
as well as long-range strain terms. In this paper, we describe the computational
details of this method, emphasizing methods of construction, interpolations, fits
and convergence. This procedure is illustrated for Ni–Pt, Cu–Au and ScS–�S
(where � denotes cation vacancy). The parameters of the final expansions are
provided on our webpage (http://www.sst.nrel.gov).

1. Introduction: representing the configurational energy of alloys

Many electronic and structural properties of A1−xBx alloys can be predicted theoretically if
one knows the ‘configurational energy function’ [1,2] Econfig[{Si}; {Ri}], providing the energy
at T = 0 for each occupation pattern of the N lattice sites with the ith site occupied by either
an A or B atom. Here, Si denotes the pseudo-spin at the ith lattice site, taking the value
−1 (+1) if it is occupied by A (B), and {Ri} are the position vectors of the atom. Given
the configurational energy function for a particular A–B alloy system, one can, for example,
search the T = 0 ‘ground states’, i.e. the stable crystal structures in that system [3–5]. Coupling
Econfig[{Si}, {Ri}] to Monte-Carlo simulation provides the equilibrium phases at (x, T ), and
thus the phase diagram [6]; through thermodynamic integration [7], one can obtain the entropy
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of the system. Finally, such simulations give directly the short-range-order parameters [8, 9]
α(x, T ) and mixing enthalpies [10, 11].

The configurational energy Econfig[{Si}, {Ri}] can be modelled at different levels of
approximation. One distinguishes between ‘direct approaches’ and ‘cluster expansions’ (CE).
In a direct approach, one minimizes the total energy for a given occupation pattern, with respect
to local atomic displacements {Ri}, yielding E

eq
config[{Si}]. This can be done either quantum

mechanically [12,13], i.e. EQM(σ ) = 〈�|H |�〉/〈�|�〉, or via interatomic potentials [14,15]
(e.g. the embedded atom method), Econfig = ∑

ij Vij +
∑

ijk Vijk + · · ·. The direct quantum
mechanical approach is limited to systems with a small number of atoms (per unit cell) and to a
rather small number of different occupation patterns (‘lattice configurations’), whereas the use
of empirical interatomic potentials is not always reliable for arbitrary alloy systems. However,
the direct approaches explicitly incorporate specific cohesive forces in the calculation of Econfig

(metallic bonding, electrostatics, exchange-correlation, etc); so it is possible to analyse ex post
facto alloy thermodynamics in terms of these fundamental bonding mechanisms.

The alternative ‘CE’ approach [1, 2] to construct Econfig is to expand Econfig at the outset
in terms of ‘geometric objects’ (GOs) such as points, pairs, triangles, and associate with each
GO a characteristic energy JGO. The most famous example of such a CE is the Ising-like
expansion [6, 16] which describes the energy as

Econfig(σ ) = J0 + J1

∑
i

Si(σ ) +
∑
j<i

Jij SiSj +
∑

k<j<i

JijkSiSjSk + · · · . (1)

Here, the configuration σ corresponds to a particular occupation pattern Si (i = 1, . . . , N). In
this approach, Econfig corresponds to the fully relaxed positions {Ri} of the basis atoms in the
cell so that the JGO correspond to cluster interactions of the atomically relaxed system. Thus,
although the relaxed positions (i.e. the local displacements of the basis atoms away from the
ideal lattice sites) are not given explicitly, they are fully included in the CE implicitly. The
format of equation (1) lends itself to convenient searching of the configurational space [3].
Furthermore, since in its truncated form Econfig(σ ) can be calculated essentially effortlessly for
each σ , coupling to statistical mechanics simulations (Monte-Carlo, Cluster Variation Method)
is computationally feasible [6, 16].

For some time, the prevailing culture in ‘CE’ approaches [6,16–19] for constructing Econfig

was to treat {JGO} as adjustable parameters and fit to the observed properties of the alloy. Thus
one would truncate equation (1) to include an arbitrarily small number of terms (the classic
Ising model retains just the first neighbour term JNN ) and fix the value of J by fitting the
order–disorder transition temperature [18] Tc = αJNN , or the formation enthalpy [19] of an
ordered A–B phase �HAB = βJNN , where α and β are numerical constants, or one would
fix certain ratios JNN/JNNN between first and second nearest neighbour to reproduce a given
ground state structure [3]. This approach has thus transformed many questions in the field of
alloy phase stability into the quest for a set of parameters {J } that reproduce measured alloy
behaviour. However, this approach, by itself, does not determine what is the physical range
of the pair interactions in equation (1), or the type of geometric objects (pair, three body, four
body, etc) that pertain to a given alloy system, or the physical origin of the relevant cohesive
forces (elastic, charge transfer, electrostatic, etc). Also, fitting to transition temperatures [20] or
fitting to short-range-order parameters [21] producesJ ’s that fail to reproduce correct formation
energies. Indeed, because these approaches provide, as just stated, a parametrization for only
a narrow range of properties, they often fail to correctly model unknown regions in the phase
diagram or accurately predict ground state structures for the full range of composition.

What one needs is an electronic structure theory which independently establishes, for
a given A1−xBx system, the range, type, physical origin and magnitude of the interaction
energies {J }. Early attempts at this goal include the ‘generalized perturbation method’ [4]
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and the ‘concentration wave method’ [22], which involve various approximations beyond the
first-principles local density approximation (LDA) that underlies these approaches. In their
various forms, these methods ignored atomic relaxation of even size-mismatched systems,
approximated the total energy just by the sum of energy eigenvalues, and until recently [23],
overlooked the Madelung contribution to the energy of ionic alloys. Here we will discuss
how a robust CE can be obtained directly from LDA calculations on a few ordered ApBq

structures. This ‘mixed-basis cluster-expansion’ (MBCE) approach [1, 24] builds on and
extends the Connolly–Williams [25] approach. We have recently applied this method to predict
thermodynamic behaviour of numerous binary alloys, including Cu–Au [26–28], Cu–Ag [26],
Cu–Pt [29, 30], Ni–Au [26, 28, 31], Ag–Au [32, 33], Cu–Pd [33], Ni–V [34, 35], Ni–Pt [36],
Ag–Pd [37, 38], Al–Zn [10, 39], Pd–V [34, 35], Pd–Pt [32], Cu–Al [10] and Cu–Zn [40] and
some semiconductor alloys [20, 41, 42]. Such CEs are then used in Monte-Carlo simulations
of the Hamiltonian. This yields phase diagrams, ground state structures, thermodynamic
functions, short-range-order profiles and precipitate shapes.

In this paper, we illustrate in detail how such an expansion is constructed from LDA total
energies. We focus on the technical issues of how a robust fit is achieved, how structures
are chosen and how a stable expansion is obtained. We illustrate this using three systems:
Ni–Pt, Cu–Au and Sc1−x �x S (where � denotes a vacancy on the Sc site)3. We chose Ni–Pt
and Cu–Au because they are paradigm binary alloys. We will show that with our MBCE
method, we can predict ground state structures that are not yet known or even suspected. The
example of Sc1−x �xS shows that the CE methodology can also be applied to vacancy-ordering
compounds and not just to ‘proper’ alloys. Although we specifically discuss alloys based on
cubic sublattices, generalization to cases of other crystal symmetries should be straightforward.

2. The structure of the MBCE

In the MBCE, any configuration σ is defined by specifying the occupation of each of the N

lattice sites by an A atom (spin index Si = −1) or a B atom (Si = +1). The formation enthalpy
of any configuration σ is conveniently given by

�HCE(σ ) = Epair(σ ) + Emultibody(σ ) + ECS(σ ). (2)

The first term Epair(σ ) includes all pair figures, where Jpair(k) and S(k, σ ) are lattice Fourier
transforms of real-space pair interactions and spin-occupation variables:

Epair(σ ) =
∑

k

Jpair(k)|S(k, σ )|2. (3)

The second term Emultibody(σ ) includes multibody interactions and runs over symmetry-
inequivalent clusters, such as empty, single, three, four and more lattice site clusters:

Emultibody(σ ) =
MB∑
f

Df Jf �̄f (σ ). (4)

Here, Df is the number of equivalent clusters per lattice site and �̄f (σ ) are structure-dependent
geometrical coefficients [20] (spin products). These first two terms of equation (2) include
all the information about the strength and importance of the different chemical interactions
characterized by effective cluster interactions Jpair and Jf . However, the strain energy (due
by the lattice mismatch) necessary to maintain coherency at an interface between regions of

3 Because ScS-�S is a pseudo-binary system (the S atom is just a spectator), the same binary formalism can used
for this system. Specifically, Si = +1 for a Sc atom and Si = −1 for a Sc vacancy, �.
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pure A and B cannot be expressed by these finite-ranged J s. Consequently, this contribution,
ECS(σ ), to the formation enthalpy is expressed by the last term in equation (2):

ECS(σ ) =
∑

k

�E
eq
CS(x, k̂)

4x(1 − x)
|S(k, σ )|2F(k), (5)

where �E
eq
CS(x, k̂) is the constituent strain energy [8,24], which is defined as the strain energy

required to maintain coherency along an interface (with orientation k̂) of bulk A and B.
To understand the necessity for this term in the CE, consider coherent phase separation,

i.e. solid A and B coherently match along the crystallographic direction k̂ (formally, this is a
long-period superlattice An/Bn with n → ∞ oriented along k̂). These long-period structures
possess small (k → 0) dominant wavevectors in S(k, σ ), but their strain energy depends on
the layer orientation, and thus the direction of k. However, the CE of equation (2) without
�ECS and with the finite-ranged interactions Jpair and Jmultibody will give [24] for superlattices,
�H(n) ∼ 1/n as n → ∞, independent of k̂. But in reality, the energy of An/Bn with
n → ∞ is a finite quantity (the energy of strained A plus strained B) which, moreover,
depends on k̂ [43]. Thus, one must include a �ECS term in equation (2) since this introduces
the orientation dependence in the energy of the coherently strained two-phase system which
cannot be described by finite-ranged real-space interactions J (R). Further, because long-
period superlattices possess k → 0 dominant wavevectors but the strain energy is dependent
on the direction of k̂, there is a k → 0 non-analyticity in the reciprocal-space description of
the coherency strain.

In other words, the value of the constituent strain in the limit as k → 0 depends on
the direction in which the limit is taken. Our formulation of �ECS treats this direction
dependence correctly and retains the correct n → ∞ superlattice limit. This form gives
the correct orientation and composition dependence in the long-period limit of the coherency
strain. Furthermore, it was shown that this form is also uniquely defined for short-period
superlattices and non-superlattices. The attenuation function F(k) is taken as exp(−|k|/|kc|)2

and permits one to treat short-period superlattices (k → 2π/n) differently than long-period
superlattices (k → 0).

For each configuration σ , the quantities �̄f (σ ), Df and S(k, σ ) are determined
geometrically. Given these three quantities, as well as the �E

eq
CS(x, k̂) obtained from LDA

calculations for the end point elements, pure A and B solids, the unknowns in equations (3)–(5)
are {Jpair(k)} and {Jf }. These are obtained by fitting a set of directly calculated LDA formation
enthalpies of some ordered configurations σs to the CE expression of equation (2). The
formation enthalpy of an ordered ApBq bulk compound is defined as the energy gain or loss
with respect to the bulk constituents at their equilibrium lattice constants:

�HLDA(σ ) = Etot(ApBq, σ ) − (1 − x)Etot
A (aA) − xEtot

B (aB). (6)

Here, aA and aB are equilibrium lattice constants of the bulk solids A and B, and Etot
A (aA)

and Etot
B (aB) are the total energies of A and B, respectively; whereas x(=q/(p + q)) is the

concentration of B in the ordered configuration σ . As shown earlier (see, e.g. [1]), it is
essential that the calculated energies Etot(ApBq, σ ) correspond to the geometrically fully
relaxed configuration, i.e. the structures have to be optimized (conserving the symmetry of the
structure) with respect to unit cell vectors, cell-internal atomic displacements and the volume
of the unit cell. In what follows, we describe in detail how the CE of equation (2) is determined
in practice. This is going to establish a first-principles Ising-like expansion where the range,
type, physical origin and magnitude of the interactions are determined via a microscopic model
of cohesion.
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3. Determination of the expansion coefficients in the MBCE

3.1. The constituent strain

Determining �E
eq
CS(x, k̂) requires three steps: (i) calculating the epitaxial energies of each

end point, A and B for several directions k̂ and in-plane lattice constant a⊥, (ii) finding
the a⊥ that minimizes the total A + B epitaxial energies for intermediate concentrations and
(iii) interpolating the results of (ii) to arbitrary directions of k̂.

For the first step, one calculates via LDA for pure A and pure B the total energy of several
different in-plane lattice constants, a⊥ (perpendicular to k̂), and in each case, the unit cell is
allowed to relax in the direction perpendicular to the interface to minimize the total energy.
This series of energies, E

epi
A,B(k̂, a⊥), is then interpolated to all in-plane lattice constants a⊥

between aA and aB using a polynomial. This process is repeated for five principal directions
of k̂—(001), (011), (111), (201) and (311). The results are illustrated in figure 1 for Ni
and Pt.

In the second step, E
eq
CS(x, k̂) is determined from the total epitaxial energy of E

epi
A (k̂, a⊥)

and E
epi
B (k̂, a⊥). That is,

�E
eq
CS(x, k̂) = min

a⊥
[(1 − x)�E

epi
A (k̂, a⊥) + x�E

epi
B (k̂, a⊥)], (7)

where the equilibrium in-plane lattice constant a⊥, common to both A and B, is chosen to
minimize the strain energy, and �Eepi(k̂, a⊥) = Eepi(k̂, a⊥) − Eepi(k̂, aeq). The constituent
strain energy E

eq
CS(x, k̂) is determined for arbitrary compositions x and a finite number of

directions k̂. The lattice constant which minimizes equation (7) for each (x, k̂) is shown in
figure 2 for Ni–Pt and Cu–Au. Figure 3 shows the constituent strain energy of equation (7) for
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five principal directions. Naturally, each of the energies �E
epi
A and �E

epi
B is positive definite

and, hence, the coherency strain of equation (7) must be positive definite.
Finally, in the third step, the constituent strain energy is interpolated to arbitrary directions

of k̂ by fitting the results to an expansion of Kubic harmonics. That is, after E
eq
CS(x, k̂) has been

directly calculated for a set of directions using total energy methods, it is then interpolated to
all directions by fitting the directly calculated results the following expression:

�E
eq
CS(x, k̂) =

lmax∑
l=0

bl(a⊥)Kl(k̂). (8)

In cubic alloys, only terms with l = 0, 4, 6, 8, 10, 12, . . . are non-zero and only these enter
into the expansion. If only the first two terms are retained, then (8) reduces to well-known
expression from harmonic elasticity theory (see discussion in [44]). However, our experience
shows that anharmonic effects are usually significant, and so, in practice, we normally fit the
data using at least four terms in equation (8), i.e. lmax = 8. Figure 4 depicts E

eq
CS(x, k̂) for

Ni–Pt and Cu–Au as a parametric plot in all directions.
In summary, �E

eq
CS(x, k̂) is determined as follows:

(a) Epitaxial calculations are performed for each constituent of the alloy, A and B. For a series
of different in-plane lattice constants a⊥ (aA � a⊥ � aB), the total energy is minimized by
varying the out-of-plane lattice constant (parallel to k̂) while the in-plane lattice constant
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(100)

(a) (b) (c)

(d) (e) (f)

Figure 4. Parametric three-dimensional presentation of the constituent strain energies �E
eq
CS(x, k̂)

of equation (8) for Ni–Pt and Cu–Au. (a) 10% Ni; (b) 50% Ni; (c) 90% Ni; (d) 10% Cu; (e) 50%
Cu; and ( f ) 90% Cu. The [111] direction is the hardest for Ni–Pt. For Cu–Au the [110] direction
is the hardest for Au-rich alloys (�75% Au), and the [111] direction is the hardest for alloys with
less than 75% Au.
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is held fixed. These values, Eepi(a⊥), are interpolated to all values between aA and aB by
a polynomial fit.

(b) The strain energy for any composition x is taken to be the weighted average of the epitaxial
energies calculated in (a) but we choose the in-plane lattice constant a⊥ to minimize the
strain energy as shown in equation (7).

(c) The strain energy for several directions k̂ is determined by repeating (a) and (b) for each
direction k̂. In practice, we use 5–7 different k̂-directions. These directly calculated
k̂-dependent values for the strain energy are then interpolated to arbitrary values of k̂

by fitting to an expansion in Kubic harmonics, as shown in equation (8). Because
of anharmonic effects, we typically find it necessary to use at least four terms in
equation (8).

3.2. The constrained CE fit

In constructing the fit of �HCE(σ ) to �HLDA(σ ), it is advantageous to use a different number
interaction energies J than the number of LDA-calculated input formation enthalpies. This
is unlike the Connolly–Williams approach [25] where the number of input structures and
interaction energies must be the same, so a large number of LDA calculations might be needed
to obtain a converged expression. However, at the same time, we must avoid ‘over-fitting’
by using too many interaction energies which results in a very accurate fit but a very poor
prediction for structures not included in the fit. To achieve these objectives, we can require
that Jpair(k) be a smooth function of k. We define [24] a ‘smoothness value’ M as

M = 1

α

∑
k

J (k)
[−∇2

k

]λ/2
J (k), (9)

where the exponent λ is a free parameter. Minimizing the value M guarantees both the
smoothness of the pairs in k-space and that the magnitude of the pair interactions generally
decreases with distance.

Our fitting procedure will be to minimize the quantity∑
σ∈s

wσ |�HLDA(σ ) − �HCE(σ )|2 + tM (10)

by varying {Jf } (for the non-pair figures included in the expansion) and Jpair (for the pair
figures). Here �HLDA is the directly calculated energy (equation (6)), �HCE is defined in
equation (2) and t is a Lagrange scaling factor. Note that using t = 0 is equivalent to eliminating
the smoothness condition and results in a standard real-space fit. In this case, the long-range
interactions may be as strong as (or even stronger than) the short-range interactions, a clearly
unphysical situation which can reduce the predictive accuracy of the CE. By subjecting the pair
interactions to the smoothness criterion as shown in equation (10), a more physically sensible,
more predictive set of interactions is obtained, and over-fitting is avoided4.

4. The computational procedure

4.1. Selection of structures for LDA calculations

In selecting the structures for input set, we begin with typical structures of binary compounds
(‘the usual suspects’) as well as a set of ApBq superlattices along the principal directions
(001), (110), (111), (201) and (311) which span the full range of compositions. Table I in
4 In practice, the smoothness criterion is imposed in a real-space fitting procedure that is formally equivalent to the
k-space expressions presented here. See section VB of [24].
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[40] and table III in [28] give a typical list of input structures. These structures need not be
lowest-energy structures. We use four criteria to establish additional structures to add to the
input set.

(i) We use the method of Ferreira et al [20] to determine whether a proposed structure exhibits
approximately linear dependence of its �̄ with that of the structures already included in
the input set. We wish to avoid including structures that are nearly linearly dependent
because this leads to instability in the fitting procedure. Selecting linearly independent
structures is also more efficient as each structure brings ‘new information’ to the fit, thus
reducing the number of structures that need to be included and consequently reducing the
total number of LDA calculations that must be performed.

(ii) We often add to our list of structures a few of supercell models of the random alloy using
the ‘special quasirandom structures’ (SQSs) approach [45]. This assures that the CE can
model not only ordered, but also disordered phases accurately.

(iii) Once we have a tentative MBCE, we calculate the ‘ground state structures’ [5] produced
by this expansion, scanning all possible unit cells with Nmax (or less) atoms/cell (usually,
Nmax � 20; see section 4.3 below). The ground state structures are determined by
constructing a ‘convex hull’. The convex hull is a set of straight line segments that
connect the set of configurations (including the pure element end points) that are stable
with respect to separation into (any) other structures of neighbouring concentrations. The
structures connected by the line segments of the convex hull, also called ‘breaking points’,
are the ground states of the alloy system because they are globally stable. If the convex
hull of the tentative MBCE predicts new ground states not in the input set, the LDA energy
of these structures is calculated and they are added to the input set and a new MBCE is
computed. This ‘direct enumeration’ approach to constructing the ground state hull is
more exhaustive than the typical Monte Carlo based simulated annealing approach used
in many previous studies, although it is subject to the (very reasonable) limitation that the
search only considers candidate structures of �20 atoms/cell.

(iv) No finite CE can predict exactly the energy of all configurations. Forcing the MBCE to
accurately fit or predict configurations with energy much higher than the ground states can
drastically slow down the convergence of the MBCE [46]. Such ‘high-energy’ structures
are not physically relevant and consequently, we introduce a cut-off energy Ecut, so any
of the structures whose energy is found to lie above the convex hull by an amount �Ecut

is excluded from the input set.

If a given structure satisfies conditions (i)–(iv) and is to be included in the fit, we calculate
its LDA formation enthalpy following equation (6). Particular care is exercised to maintain
comparable precision in both the energy Etot(ApBq) of the compound and that of the end points,
Etot

A and Etot
B . This is done by using a set of k-points for the compound that is equivalent [47] to

that used for the calculations of the end points. Choosing a single equivalent k-point mesh that
is commensurate for all compounds is not always possible. For fcc-based alloys, we normally
choose a k-mesh equivalent to the 60 special points of the 8 × 8 × 8 mesh, when the unit
cell vectors of the ordered compound permit. For structures that are incommensurate with the
8×8×8 fcc mesh, we calculate the total energies of the compound and end-point constituents
with a finer k-point grid. The procedure of equivalent k-points ensures that, due to systematic
cancellation of errors, the formation enthalpies converge (with respect to the fineness of the
k-point mesh) much faster than the total energies of the compound and the end-point elements.
Also, attention is paid to obtaining equivalent precision in the calculated energies of A, B and
ApBq in terms of FFT and other integration grids.
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4.2. Selection of the type of cluster interactions

The interaction energies J are determined by minimizing equation (10). Of course an excellent
fit can be obtained by using a large number of fitting parameters but such ‘over-fitting’ destroys
the predictive accuracy of the CE. We desire a CE which accurately fits the input structures and
accurately predicts the formation enthalpy of structures not included in the fit. In practice, we
accomplish this by dividing the Ns members of the LDA input set into two groups. The first
group of Nf structures is those ‘included in the fit’, i.e. they are used to produce the interaction
energies. In contrast, the second group of Np structures are reserved for predictions. We
monitor the fitting error,

Rfit =
√∑Nf

σ=1(�HLDA(σ ) − �HCE(σ ))2

Nf
, (11)

and prediction error,

Rpred =
√∑Ns

σ=Nf +1(�HLDA(σ ) − �Hpred(σ ))2

Np
. (12)

The ideal cluster expansion will find the best compromise to simultaneously minimizing
both of these quantities for any set of ‘fitted’ and ‘predicted’ structures. Thus, the number of
pairs (Npair), the smoothness parameters (t and λ) and the choice of multibody terms should
be chosen to optimize Rfit and Rpred for different choices of these parameters. Our (heuristic)
method for performing this optimization is as follows:

(i) the number of pair interactions Npair is varied while λ, t (equations (9) and (10)), and the
NMB (equation (4)) are held fixed;

(ii) a range of λ values is scanned while Npair, t and NMB are held fixed;
(iii) a range of t values is scanned while λ, Npair and NMB are held fixed;
(iv) the number of multibody terms NMB is varied while λ, t and Npair are held fixed.

After optimizing the CE by completing steps (i)–(iv) above, we subject it to two tests.
First, we identify sensitive structures by calculating the ‘elimination error’, i.e. we use Ns − 1
structures for the fit, and predict the error in the energy of the eliminated structure. This is
repeated for all Ns structures. This test identifies which structure is a sensitive structure. The
structures with large ‘elimination errors’ have to be included in the fit, otherwise the fit error
increases significantly. The second test is loosely referred to as a ‘ground state consistency’
test. At each concentration, we check to see that the input structures computed by LDA retain
their energy ordering (with respect to each other) when predicted by the MBCE. Additionally,
we check to see whether the convex hull constructed using the LDA-calculated values of the
input structure matches that constructed using the MBCE-fitted/predicted values.

4.3. Iterating the fit

The fit is done iteratively. In each iteration we might change {λ, t, Npair, NMB}, add structures
(e.g. new ground states) and/or eliminate structures (e.g. structures with energies far above the
ground state hull). If the Rfit value is too large, then one must increase the number of pair
and multibody interactions. This may lead to ‘over-fitting’ (Rpred will become too large) or
poor performance of the CE during the ‘ground state consistency’ test. When this happens,
more input structures must be included in the input database (i.e. more LDA calculations are
necessary).

Once we have a set {λ, t, Npair, NMB} that has minimal errors in Rfit and Rpred, passes the
‘ground-state consistency test’, and accurately treats the structures identified as having high
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‘elimination errors’, we use this expansion to calculate the ground states. We use the ‘direct
enumeration’ procedure of Ferreira et al [5]. Any new ground state that is predicted by this
search is added to the list of input structures and steps (i)–(iv) of section 4.2 are then repeated.
The following section uses three different examples to illustrate this procedure.

5. Illustrating the procedure

We illustrate the procedures of section 4 using Ni–Pt, Cu–Au and Sc1−x �xS as examples.
The LDA calculations for Ni–Pt and Sc1−x �xS were done using pseudo-potential plane-wave
method. The constituent strain term is included for Ni–Pt and Cu–Au, but not for Sc1−x �xS,
because the constituent strain energy for this case is not positive definite (because the x = 1
end-point material, �S (essentially fcc sulfur), is not stable).

Figure 5 illustrates for Ni–Pt how the fitting (upper panels) and prediction (lower panels)
errors are affected by different values of t , λ and Npair. We have used for Ni–Pt a set of
Nf = 32 structures for the fit, plus Np = 3 structures for predictions. The fit and prediction
errors depend on the structures chosen. Naturally, as the number of pair interactions increases
(figure 5(a)), the fitting error decreases monotonically. However, the prediction error goes
through a minimum around Npair ∼ 23 (figure 5(b)), above which the system is ‘over-fitted’
with too many fitting parameters. Stopping at Npair = 23, we optimize λ of equation (9)
and t of equation (10) in figures 5(c)–( f ), respectively. We see from figure 5(c) that as t

increases, the quantity tM in equation (10) increases too, so the fit error must increase. But the
prediction error (figure 5(d)) again goes through a minimum at some t (tmin = 15 for Ni–Pt,
see the arrow in figure 5(d)). Note in figure 5(d) that using t = 0, which is equivalent to a
real-space CE [25, 48, 49], one has a very large prediction error. Similarly, as λ increases the
fit error decreases, but the prediction error goes through a minimum around λ ∼ 7 (see the
arrow in figure 5( f )). Figure 6 shows similar results for Cu–Au. We see that system has a
minimum prediction error at Npair ∼ 26. Therefore, we choose Npair = 26 and optimize λ

and t as depicted in figures 6(c)–( f ), respectively. In a similar procedure as mentioned above
we find out that for Cu–Au system λ ∼ 2 and t ∼ 20 minimize our fitting and prediction
errors. Figure 7 shows the results for ScS–�S. For this system, we choose Npair = 25, t = 20
and λ = 2. Figure 8 shows the elimination error test for Ni–Pt and Cu–Au. We plot the
‘elimination error’ for two iterations in the CE procedure: an early iteration, showing large
elimination errors (dashed lines), and a well-optimized expansion, showing smaller elimination
errors. In both cases, we identify some structures whose elimination from the fit does not cause
any increase in error (e.g. L12a, L12b and DO22b for Ni–Pt) and some ‘sensitive structures’ that
must belong to the input set, or else the fit error increases significantly (e.g. W2 for Ni–Pt and
L10 and W2 for Cu–Au). We emphasize that our final fit includes all of the Nf + Np structures
(none eliminated), so the errors shown in figure 8 are larger than the actual errors in the
final fit.

Figure 9 shows for Ni–Pt, Cu–Au and ScS–�S the ‘ground state consistency test’
comparing the input LDA energies (circles) and fitted/predicted CE energies (crosses). We
see that the fit is good, i.e. the crosses match the circles. In particular, the structures that are
on the convex hull in LDA among the input structures are still on the same line in the CE fit.

Figures 10–12 show the calculated ground states of Ni–Pt, Cu–Au and ScS–�S using
the direct enumeration method for unit cells with up to 20 sites. The number of unique
structures is 3 039 674 whereas for unit cells with 8 and 12 sites the number of structures is
670 and 12 098, respectively. We see that for Ni–Pt, we identify one unsuspected ground
state structure at composition 12.5% Ni that was not initially part of the ‘input set’. The
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Figure 6. Fitting and prediction errors for Cu–Au as a function of Npair , t and λ (see caption of
figure 5).

atomic positions and unit cell vectors of this NiPt7 structure were given in table 1. The crystal
structure is shown in figure 13. Having identified this new ground state, we next calculated its
LDA energy, finding �HLDA (NiPt7) = −41.6 meV atom−1, compared with the CE prediction
�HCE (NiPt7) = −40.8 meV atom−1.
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the structure which is not included in the fit. Here, δ is the CE prediction error of a given structure,
eliminated from the input basis set used to perform the fit. Dashed lines: elimination error for an
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Next, we enquire if this structure is stable against separation into any other two structures at
neighbouring concentrations. In other words, does it lie on or above the convex hull? We thus
consider the two structures that in the global ground state search of figure 10 are neighbouring
vertices to NiPt7. This gives pure Pt at x = 0 and Pt3Ni at x = 25% (figure 10). Their LDA
energies �HLDA are 0 meV atom−1 and −65.1 meV atom−1, respectively. We can now check
if NiPt7 is below the ‘tie-line’ connecting the two neighbouring ground states. We find that
it lies 9.1 meV atom−1 below this tie line. Thus, NiPt7 is stable against separation into its
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neighbouring ground state structures not only in the CE, but also in LDA. Having verified that
the new structure is a ground state, we add it to the ‘input set’ and repeat the optimization of
λ, t , Npair and NMB. We find that to include the new ground state in the input set does not
change the optimized values of λ, t , Npair and NMB. The ground states found in the ground
state search are same as before without including this new ground state in the input set. This
test shows that the present CE is converged.

Figure 11 describes the ground state search for Cu–Au for primitive unit cells containing
up to 20 sites. The ground state searches for unit cells up to 8, 12 and 20 sites predict the same
ground states. We see in figure 11 that there are two new ground states which are not part of
the initial input set. The crystal structures, the atomic positions and unit cell vectors of three
new ground states are shown in figure 14 and table 2, respectively. The set of ground states
we find is larger than the set of ground states found in previous studies (see [26–28]). This is a
result of using the direct enumeration approach instead of simulated annealing for the search
of the ground states. An in-depth discussion of new ground states in the Cu–Au and Ni–Pt
systems can be found in [50].
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Figure 10. Ground state search for unit cells with up to 20 sites for Ni–Pt. Arrows denote the
ground states identified out of 3 039 674 configurations.

These new ground states are at 33.3% and 60% Au concentration. The new structure
at 33.3% is located 4.8 meV atom−1 below the tie line connecting the ground states at
concentration 25% and 50%. We next calculated the energy of this structure using the ab initio
LDA method. The calculated LDA energy (−47.7 meV atom−1) was in good agreement with
CE prediction energy (−46.1 meV atom−1). Also we calculate the LDA energy of the new
ground state at 60% Au concentration. The calculated energy value was −48.8 meV atom−1

which is in good agreement with the CE value of −48.9 meV atom−1. When we include these
new ground states in the input set of our CE, we find that our CE is stable with respect to
addition of these new structures, i.e. we are finding the same ground state structures before
and after addition of these two structures to the input set.

For Cu–Au, we use a cut-off energy of 80 meV so that any structure whose energy lies
above the ground state line by more than this amount is discarded from the input set. If we
include these high-energies structures, we could not get a good fit for low-energies structures.
Figure 15 shows the elimination error plot for a fit including very high energy structures
(�H = 32.5, 52.2, 78.6 and 61.4 meV atom−1 for L11, v2 (A3B1 〈111〉), v1, (A2B2 〈111〉)
and α1 (A3B1 〈111〉), respectively). We see large elimination errors even in low-energy
structures, such as α2, b1 and b2 (A1B2 〈111〉, A2B1 〈001〉 and A1B2 〈001〉, respectively).
However, excluding high-energy structures from the fit gives much lower elimination errors (see
figure 15).

The ground state search (direct enumeration) using the CE for ScS–�S yielded 12 ground
states for concentrations 0 < x � 1

3 . The only experimentally known ground state for this
system occurs at x = 1

3 . In the literature, this structure is known as Sc2S3 although a more
appropriate nomenclature would be Sc2 �1S3. This structure is a face-centred orthorhombic
structure based on the underlying fcc lattice and has 12 scandium sites per primitive unit cell.
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Figure 11. Ground state search for Cu–Au (see caption of figure 10).

Ground state search for ScS - S

ScS - S

Figure 12. Ground state search for Sc1−x �xS (see caption of figure 10).
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Table 1. New ground state predicted by the CE for Ni–Pt.

Structure Lattice vectors Atomic positions k-vectors

NiPt7 1 0 0 Ni 0 0 0 0 0 1
2

0 1 0 Pt 1
2

1
2 0 0 0 1

1
2

1
2 2 Pt 1

2 1 1
2 1 0 1

4

Pt 1 1
2

1
2

Pt 1 1 1
Pt 1

2
1
2 1

Pt 1
2 1 3

2

Pt 1 1
2

3
2

New ground state structure NiPt7

Ni

Pt

Figure 13. Crystal structure of the new ground state NiPt7 predicted for Ni–Pt.

New ground state structures for Cu-Au

Cu4Au2

Cu

Au

Cu2Au3 CuAu2

Figure 14. Crystal structures of the new ground states predicted for Cu–Au.

This structure is precisely that predicted by our CE at x = 1
3 . Experiments have hinted at the

configuration of the ground states for x < 1
3 , but, to date, no definite results have been reported,

though there are some striking similarities between CE-based Monte-Carlo simulations and
the interpretation of x-ray data from some experimental studies. A complete exposition of



702 A Zunger et al

Table 2. New ground states predicted by the CE for Cu–Au.

Structure Lattice vectors Atomic positions k-vectors
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Figure 15. Elimination errors for Cu–Au with or without high-energy structures.

the ScS CE and its predictions, as well as references to the experimental studies, can be
found in [51].

Figure 16 presents J (k) for Ni–Pt and Cu–Au along the principal directions in the Brillouin
zone. Since we have dealt with the singularity of Jpair(k) at k → 0 by separating the elastic
strain energy of coherent superlattices in the long-period limit, we can see that JSR(k) has
a finite value at k → 0. Figure 17 presents the calculated pair interactions as a function of
the near-neighbour fcc shell. We see that for Cu–Au, only the first five nearest-neighbour
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pair interactions are dominant, but in Ni–Pt the range is longer, with the third, fifth and
seventh neighbour pair interactions are still very strong. Both Cu–Au and Ni–Pt have positive
nearest-neighbour pair interactions which is consistent with the tendency towards complete
miscibility and ordering at low temperatures. For ScS–�S only the first three pair interactions
are dominant.

The multibody geometric figures included in the CE are defined in figure 18. The
multibody energies are shown in figure 19. These figures illustrate the importance of the
multibody terms in our Hamiltonian. We can see that dominant contributions are different
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Multibody geometric figures for fcc lattice

Figure 18. Multiatom geometric figures used in the CE.

for Cu–Au, Ni–Pt and ScS–�S. For Ni–Pt the empty site and three-body J3 interactions are
dominant, and the empty site, three-body J3 and P3 interactions are dominant for Cu–Au.
However, for ScS–�S the single site term is the only dominant interaction.

6. Summary

The MBCE maps ≈20–40 LDA total energy calculations of rather simple binary ApBq

compounds onto a generalized Ising expansion that includes an arbitrary number of pair and
multibody interactions, as well as strain terms. This expansion predicts accurately the LDA
energies of structures not included in the fit, and can hence be used, in conjunction with
lattice statistical mechanics techniques to predict ground states, x-T phase diagrams, short-
range order and alloy microstructures. An interesting aspect of this approach is that it can
be used as an analytical tool to reveal the microscopic origins of thermodynamic behaviour.
For example, one can use a set of model input energies that eliminate, on purpose, a specific
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Figure 19. Multibody interaction energies for Ni–Pt, Cu–Au and ScS–�S (see figure 18 for the
definition of the multibody terms).

bonding mechanism such as p–d coupling, or atomic relaxation, or relativistic correction, or
spin-polarization, etc. Then using this set of energies one can generate the corresponding
CE and predict the ensuing thermodynamic properties. By comparing these thermodynamic
properties with those of the ‘full’ CE, one can shed light on the chemical bonding underpinning
particular thermodynamic phenomena.
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