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A B S T R A C T

In the DFT community, it is common practice to use regular k-point grids (Monkhorst-Pack, MP) for Brillioun
zone integration. Recently Wisesa et al. (2016) and Morgan et al. (2018) demonstrated that generalized regular
(GR) grids offer an advantage over traditional MP grids. The difference is simple but effective. At the same
k-point density, GR grids have greater symmetry and 60% fewer irreducible k-points. GR grids have not been
widely adopted because one must search through a large number of candidate grids; in many cases, a brute force
search could take hours. This work describes an algorithm that can quickly search over GR grids for those that
have the most uniform distribution of points and the best symmetry reduction. The grids are 60% more effi-
cient, on average, than MP grids and can now be generated on the fly in seconds.

1. Introduction

In computational materials science, the properties of crystalline
materials are often calculated using density functional theory (DFT).
These codes integrate the electronic energy over the occupied states in
the Brillouin zone. In the case of metals, convergence of the total energy
is very slow. The convergence rate is approximately proportional to the
density of k-points used to sample the Brillouin zone. An order of
magnitude increase in accuracy requires at least an order of magnitude
more k-points [2].

Additionally, as high throughput [3–22] calculations have become
more popular because of their recent successes [23–52], the efficiency
of the calculations becomes more important. The accuracy and quantity
of calculations within material databases is a crucial component in high
throughput and machine learning approaches. Increasing the speed of
calculations, without reducing the accuracy, would significantly impact
material predictions.

DFT codes generally use regular grids, proposed by Monkhorst and
Pack (MP) [53], to define their k-point grids. k-points within a regular
grid are defined by:

= = + +n n n n
d

n
d

n
d

k b b b b b b( , , ) ( , , )1 2 3
1

1 2 3
1

1
1

2

2
2

3

3
3 (1)

where bi are the reciprocal lattice vectors, is a diagonal integer

matrix with di along the diagonal, and ni runs from 0 to d 1i .
An alternative, more general method was proposed by Moreno and

Soler [54], which involves searching through grids at a desired k-point
density for those that have the highest symmetry reduction, i.e., the
lowest general-point multiplicity or fewest symmetrically distinct
k-points. High symmetry reduction impacts the computation's cost; the
cost of a DFT calculation scales with the number of irreducible k-points.
The grids are then sorted by the length of the shortest grid generating
vector and the grid with the longest vector is choosen, thus selecting the
most uniform grid (that is, the grid with the highest packing fraction for
densly packed spheres). The Moreno-Soler method involves the con-
struction of superlattices from the real-space parent lattice (primitive
lattice)

=s s s a a a( , , ) ( , , )1 2 3 1 2 3 (2)

where the columns si are the supercell vectors, the columns ai are the
parent lattice vectors, and is an integer matrix. The dual lattice of the
superlattice defines the k-point grid generating vectors i.
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Note that the determinant of determines the number of k-points that
lie within the Brillouin zone.
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We refer to grids generated by the Moreno-Soler method as
Generalized Regular (GR) grids. GR grids have a number of advantages
over Monkhorst-Pack grids. Most importantly, GR grids, on average,
have a much better symmetry reduction (fewer irreducible k-points),
making them more efficient. (Note: With MP grids it is possible to
choose the lattice vectors so that the maximum symmetry reduction is
achieved, but in practice this is difficult for the user and contrasts with
accepted practice where the user typically chooses the most orthogonal
set of vectors.) Secondly, the number of grids is much higher for GR
grids, allowing the user to choose k-point densities “in between” those
possible with MP grids. Finally, the uniformity of GR grids (the packing
fraction) is often slightly higher. (Though this is a minor advantage for
metals where convergence is so slow that uniformity of the grid has
little effect.)

GR grids have never been widely adopted because they require a
search over many supercells to select the cell that 1) maximizes the
distance between points and 2) has the fewest irreducible k-points, i.e.,
has the highest symmetry reduction. These searches tend to be time
consuming due to the combinatoric explosion in the total number of
possible supercells shown in Fig. 1.

Recently Wisesa, McGill, and Mueller [1] (WMM) rectified this by
creating a k-point server containing precalculated grids that have high
symmetry reduction. These grids can be retrieved via an internet re-
quest and have been demonstrated to be 60% more efficient than MP
grids [2,1]. However, the requirement of an internet query, which
cannot be performed in typical supercomputer environments, makes
them difficult to use in some cases. Here we present an algorithm for
generating GR grids “on the fly” (avoiding the need for an internet
query). This algorithm has been implemented in a code available at
https://github.com/msg-byu/autoGR. This code takes the nu-
merical lattice vectors, atomic basis vectors, and grid density from a
user and returns the optimal GR grid.

The algorithm is fast, taking just a few seconds for grids of 50,000
k-points. The combinatorial explosion is avoided by the algorithm
below, which limits the candidate grids to those that are symmetry-
preserving and which have a sufficiently high packing fraction (a metric
equivalent to the maximum real-space lattice spacing of Ref. 1).

2. Algorithm

2.1. Generating symmetry-preserving supercells

The main difficulty in generating GR grids is that the number of
distinct supercells grows extremely rapidly1 with the volume factor (the
determinant of ). 2 To optimize the k-point folding efficiency, the
k-point grid should result in a real space superlattice3 that has the same
symmetry as the parent lattice. The number of supercells that preserve
the symmetry of the parent is always significantly smaller than the
number of possible supercells (except in the case of triclinic lattices) as
can be seen in Fig. 1. If one can quickly generate only those supercells
that preserve the symmetry of the parent, avoiding the combinatorial
explosion, the computational burden is drastically reduced.

To generate only the symmetry-preserving supercells, we restrict
to be an integer matrix in Hermite Normal Form (HNF) subject to the
constraints:
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We will use the notation that = a a a( , , )1 2 3 is the parent lattice and
= c c c( , , )1 2 3 is a supercell such that = . When the lattice

symmetries are applied to , they generate another set of basis vectors,

= g (5)

(where g is an element of the point group). Because and are related
by a symmetry operation of the lattice, they both represent the same
lattice and are related by an integer matrix
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where is an integer matrix with determinant ± 1. Similarly, if a
supercell has the same symmetry as then all the symmeties of
will map to another basis that will be related to by a unimodular
transformation
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where G is the set of generators of the point group of and is an
integer matrix. Using Eqs. (6) and (7), it is possible to define restrictions
on the entries of :

= .1 (8)

In other words must be such that is a transformation of that
retains integer entries. Eq. (8) yields the following system of linear
equations

Fig. 1. The number of superlattices that preserve the symmetry of the parent
lattice at various volume factors (numbers of k-points). The total number of
superlattices that exist is also displayed for comparison. Cubic cells were
omitted since they have at most one symmetry-preserving superlattice at any
given volume factor.

1 Eq. (2) in Ref. [67]
2 Note that the determinant of determines the number of k-points in the

Brillouin zone.
3 In the mathematical and crystallography literature, these derivative lattices

are referred to as sublattices. Although this nomenclature is more correct, we
follow the nomenclature typically seen in the physics literature where a deri-
vative lattice whose volume is larger than that of the parent is referred as a
superlattice.
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where xi are the entries of n, is the determinant of and ,i i, and i
are arbitrary names for the expressions used for convenience. will
generate a supercell that preserves the symmetries of when

, , , ,1 2 3 4 1, , ,2 3 1, and 2 are all integers for each generator in G.
Even though the solutions to (9) have no closed form, we may use them
to build an algorithm that generates matrices that preserve the lattice
symmetries.

The specific form of depends on the basis chosen for the parent
lattice; the solutions to (9), and resulting algorithms, will differ de-
pending on the basis. For example, if a base-centered orthorhombic
lattice is constructed with the basis
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then (9) would reduce to (each equation has three outputs because the
base centered orthormbic point-group has three generators):
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All the equations in (11) must be simultaneously satisfied for the gen-
erated ’s to preserve the symmetries of 1. Alternatively the basis
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could be used to construct the same lattice. When basis 2 is chosen,
the relations in (9) become:
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Note the stark difference between the relationships derived from 1

and 2. 2 results in fewer equations to check, however, 1 gives re-
lationships between a and b, and a and c separately resulting in a faster
search since many combinations can be skipped early in the search. By
taking care in selecting a basis for each lattice, one can find an efficient
set of conditions for generating the supercells of that basis.

2.2. Niggli reduction

Choosing a basis for each type of lattice presents a problem; there
are an infinite number of lattices basis choices. The number of bases is
substantially reduced by recognizing that any given symmetry-preser-
ving HNF, sp, will work for every lattice of the same symmetry. The
sensitivity of the representation of the point group on the chosen
basis requires a set of representative bases that goes beyond the 14
Bravais lattices. Such a set was constructed by Niggli [55–58], who
identified 44 distinct bases. Any given basis of a crystal can be classified
as one of these 44 cases by reducing it to the Niggli canonical form and
then comparing the lengths of the basis vectors and the angles between
them. If two nominally different lattices reduce to the same Niggli case,
then the two lattices are “equivalent” and have the same symmetries
and the same set of sps.

Niggli reduction allows for the user’s basis to be mapped to a basis
which has convenient solutions to Eqs. (9). The strategy is to define the

sp’s in the selected basis, then generate the supercells for the selected
basis and transform them to the ’s for the Niggli reduced basis, R

sp.
Once the R

sp’s have been determined, they can be applied directly to
the user’s reduced basis to create a symmetry-preserving supercell of
the user’s parent cell and thus define an efficient k-point grid at the
specified density.

2.3. Grid selection

At a given volume factor (i.e., number of k-points), the integer re-
lations in Eq. (9) will yield multiple supercells for most lattices, a 2D
example of these supercells is provided in Fig. 2(a). It is then neccessary
to select one which defines the best k-point grid. This is done by
transforming each symmetry-preserving supercell to its corresponding
k-point grid generating vectors as in Eq. (3); see Fig. 2(b). We then
search this set of grids for one that has optimal properties—a uniform
distribution of points and the best symmetry reduction. To ensure the
grid generating vectors are as short as possible we perform Minkowski
reduction [59], then sort the grids by the length of their shortest vector.
(This is practically equivalent to maximizing the shortest real-space
lattice vector, as done in Ref. 1.)

The most uniform grids will have the maximal shortest lattice vector
in real space. We filter the grids so that only those with a k-point
packing fraction of greater than 0.3 are considered. (The packing frac-
tion is N V

V
k k-points -point

reciprocalcell
, where the volume of a single k-point is computed

using the distance to the closest neighboring k-point.) Each of the re-
maining grids is then symmetry reduced [60] in order to determine
which has the fewest irreducible k-points. Table 1 shows the length of
the shortest vector and number of irreducible k-points for the grids in
Fig. 2(b). The grids are sorted first by the length of their shortest vector
(eliminating the green and red grids) then by the number of irreducible
k-points such that the ideal grid appears at the top of the table, i.e., the
grid generated by the brown supercell in Fig. 2(a).

It is also possible to offset the k-point grid from the origin to im-
prove the grid's efficiency. The origin is not symmetrically equivalent to
any other point in the grid; for example, including an offset makes it
possible for the point at the origin to be mapped to other points in the
grid, decreasing the number of irreducible k-points. Different grids
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have different symmetry-preserving offsets that should be tested. For
example, both simple cubic and face-centered cubic (fcc) grids have one
possible offset that preserves the full symmetry of the lattice, ( ), ,1

2
1
2

1
2

(expressed as fractions of the grid generating vectors), while a body-
centered-cubic lattice has no symmetry-preserving offsets,4 and simple
tetragonal has three symmetry-preserving offsets. (For a full list of the
symmetry-preserving offsets by lattice type, see the Appendix.) The grid
that has the fewest k-points with a given offset is selected.

Not every volume factor will have a symmetry-preserving grid that
is uniform; some volume factors will have no symmetry-preserving
grids. To ensure that a symmetry-preserving grid is found, it is neces-
sary to include multiple volume factors in the search. The number of
additional volume factors to search depends on the lattice type; in
general, the search continues until multiple candidate grids have been
found. The best grid is then selected from these candidates.

2.4. Method summary

The algorithm can be summarized in the following steps:

1. Identify the Niggli reduced cell of the user’s structure.
2. Generate the symmetry-preserving HNFs for the canonical form of

the Niggli cell.
3. Map the resulting supercells to the original lattice using the Niggli-

reduced basis as an intermediary.
4. Convert the supercells into k-point grid generating vectors.
5. Perform Minkowski reduction on the grid generating vectors.
6. Sort the grid generating vectors by the length of their shortest

vector.
7. Select the grids that maximize the length of the shortest vectors.
8. Use the symmetry group to reduce the selected grids to find the one

with the fewest irreducible k-points.

3. Demonstration

To test the above algorithm, we compared the k-point grids it
generates,GRauto, to those generated by the k-point sever [1],GRserver in
two ways. First, we generated both grids over a range of k-point den-
sities for over 100 crystal lattices. These lattices were constructed for
nine elemental systems—Al, Pd, Cu, W, V, K, Ti, Y, and Re—with su-
percells for the cubic systems having between 1 and 11 atoms per cell
and supercells for the hexagonal close packed systems having between
2 and 14 atoms per cell. Additional test structures were selected from
AFLOW [3]. All tests were conducted without offsetting the grids from
the origin, i.e., all tests were done for -centered grids. The tests were
performed by querrying the k-point server for a wide range of rmin
values with the INCLUDEGAMMA = TRUE flag included. The resulting
number of total and irreducible k-points was then read from the
KPOINTS file returned. For a fair comparison each rmin value was then
converted into a minimum number of k-points using the formula [1]:

=N r V2
2

/ pmin
3

(14)

where Vp is the volume of the real space cell. The GRauto algorithm was
then run with the input flags NKPTS = npts and SHIFT = 0.0 0.0 0.0.
We then plotted the resulting ratio of irreducible k-points to total
k-points in each grid. Six representative examples of the results are
shown in Fig. 3. These tests show that the GRauto grids should be very
close in performance to GRserver grids. Additionally, the tests show that
convergence toward the ideal folding ratio is rapid for all lattice types.

Fig. 2. A 2D example of symmetry-preserving supercells and the k-point grids that they would generate for a rectangular lattice. a) contains four symmetry-
preserving supercells of the primitive cell, shown in blue, with a volume factor of 12. In b) the primitive cell, blue cells, and the supercells have been mapped to
reciprocal space and the grids that would have been generated from each supercell have been placed in a cell. The color of the grid points matches the color of the
generating supercell. The circled points are the irreducible k-points of each grid.

Table 1
Properties (length of shortest vector and number of irreducible k-points) of the
grids in Fig. 2.

Grid Shortest vector length Number of irreducible k-points

Brown 1
6

6

Purple 1
6

8

Green 1
8

6

Red 1
12

8

4 For some lattices no symmetry-preserving offsets exist. In these cases using
an offset that does not preserve the full symmetry can be beneficial. For ex-
ample, a body centered cubic system with an offset of (0, 0, )1

2 can sometimes
offer better folding than the same grid with no offset.
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The second test compared the total energy errors of MP (generated
by AFLOW), GRauto and GRserver grids in the same manner and using the
same methods, as done in our previous study of GR grids [2]. We
provide a brief review of that method here.

DFT calculations were performed using the Vienna Ab-initio Simulation
Package 4.6 (VASP 4.6) [61–64] on the nine pure-element systems men-
tioned above using PAW PBE pseudopotentials [65,66]. In order to isolate
the errors from k-point integration, the different cells were crystal-
lographically equivalent to single element cells. (For details, see Ref. [2].)
For MP grids, the target number of k-points ranged from 10 to 10,000
unreduced k-points, for GRserver grids the range was 4–240,000 unreduced
k-points, and forGRauto the range was 8–415,000 unreduced k-points. The
GRauto grids were generated at densities such that more grids were gener-
ated at greater densities. The GRserver grids were generated by using small
step sizes over the MINDISTANCE parameter and throwing out duplicate

grids. In total, we compared errors across more than 7000 total energy
calculations. The energy taken as the error-free “solution” in our compar-
isons was the calculation with the highest k-point density for each system.
The total error convergence with respect to the k-point density is shown in
Fig. 4. The total error convergence with respect to the number of irre-
ducible k-points was compared using loess regression, see Fig. 5. Ratios of
these trend lines were then taken to determine the efficiency of each grid
relative to the GRserver grids (see Fig. 6).

From Figs. 5 and 6, it can be seen that GRauto grids are up to 10%
more efficient and at worst 5% less efficient than GRserver grids. Both
sets of grids outperform MP grids by 60% at an accuracy target of
1meV/atom. The runtime for the algorithm to generateGRauto grids at a
k-point density of 5000 (dense enough to achieve 1meV/atom accu-
racy) was 3 s on average.

Fig. 3. A comparison of theGRauto andGRserver k-point grids. For each grid the number of irreducible k-points was divided by the total number of k-points. This shows
that both sets of grids offer similar folding at a given k-point denstiy and will have similar efficiencies.
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4. Conclusion

We have designed an algorithm that generates Generalized Regular
(GR) grids “on the fly”. TheseGRauto grids are 60% more efficient than
MP grids at an accuracy target of 1meV/atom and have similar effi-
ciency to GRserver grids [1].

The algorithm is able to reduce the search space for GR grids by only
generating grids that preserve the symmetry of the input lattice. The
symmetry-preserving grids are then filtered so that only the most effi-
cient grid is returned. For our test cases the average runtime of finding
the optimal grid was 3 s. This algorithm has been implemented and is
available for download at: https://github.com/msg-byu/autoGR.

Data availability

The raw data required to reproduce these findings are available to
download from https://github.com/msg-byu/autoGR. The processed
data required to reproduce these findings are available to download
from https://github.com/msg-byu/autoGR.

CRediT authorship contribution statement

Wiley S. Morgan: Conceptualization, Data curation, Formal ana-
lysis, Methodology, Software, Visualization, Writing - original draft,
Writing - review & editing. John E. Christensen: Software. Parker K.
Hamilton: Software. Jeremy J. Jorgensen: Conceptualization,
Software, Visualization, Writing - review & editing. Branton J.
Campbell: Methodology. Gus L.W. Hart: Conceptualization, Formal
analysis, Funding acquisition, Investigation, Methodology, Project ad-
ministration, Resources, Supervision, Validation, Writing - original
draft, Writing - review & editing. Rodney W. Forcade: Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

The authors are grateful to Tim Mueller, Georg Kresse and Martijn
Marsman for helpful discussions. This work was supported by the Office
of Naval Research (ONR MURI N00014-13-1-0635). The authors are
grateful to C.S. Reese who helped with the loess regression and statis-
tical analysis of the data shown Figs. 5 and 6.

Fig. 4. The total energy convergence with respect to total k-point density for
MP, GRauto and GRserver grids. The top axis shows the linear k-point spacing
with a factor of 2 included as part of the transformation to reciprocal space.
This differs from the linear k-point spacing usually used as input in DFT
codes by a factor of 2 , i.e., to get the spacing used as input in codes divide
the values here by 2 .

Fig. 5. The total energy convergence with respect to irreducible k-point density
for MP, GRauto and GRserver grids with loess regression applied.

Fig. 6. Along the y-axis are the ratios of the MP and GRauto efficiencies com-
pared to the GRserver grid efficiency (black horizontal line at 100). Total energy
error (per atom) is plotted along the x-axis and decreases to the left. MP grids
are 60% less efficient than bothGRauto andGRserver grids at a target accuracy of
1meV/atom. The GRauto grids, however, outperform GRserver grids at low den-
sities but otherwise closely agree with GRauto grids.
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Appendix A

A.1. Symmetry-preserving offsets

The following is a table of the symmetry-preserving offsets for each Bravais lattice expressed in terms of fractions of the primitive lattice vectors.

Simple Cubic ( ), ,1
2

1
2

1
2

Face Centered Cubic ( ), ,1
2

1
2

1
2

Body Centered Cubic None
Hexagonal ( )0, 0, 1

2
Rhombohedral ( )0, 0, 1

2
Simple Tetragonal 0, 0,

, , 0

, ,

1
2

1
2

1
2

1
2

1
2

1
2

Body Centered Tetragonal ( )0, 0, 1
2

Simple Orthorhombic 0, 0,

0, , 0

, 0, 0

0, ,

, 0,

, , 0

, ,

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Base Centered Orthorhombic 0, 0,

0, , 0

0, ,

1
2

1
2
1
2

1
2

Face Centered Orthorhombic ( ), ,1
2

1
2

1
2

Body Centered Orthorhombic 0, 0,

0, , 0

, 0, 0

1
2

1
2

1
2

Simple Monoclinic 0, 0,

0, , 0

, 0, 0

0, , ,

0, ,

, , 0

, ,

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Base Centered Monoclinic 0, 0,

0, , 0

, , 0

, ,

, , 0

, ,

0, ,

1
2

1
2

1
4

1
2

1
4

1
4

1
2

1
4

1
4

1
4

1
4

1
2

1
2

1
2

Triclinic None
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