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Machine learning (ML) has been transforming materials 
science. The past two decades have been marked by a 
dramatic increase in the amount of generated data, and 
ML provides the essential tools to extract information1–3: 
software that helps in making inferences on materials 
is now commonplace and often freely available1,4. As a 
result, there has been a widespread improvement in sci-
entists’ ability to develop fundamental understanding, 
explain experimental results and conduct atomic-scale 
modelling at unprecedented timescales and length 
scales. It is increasingly common to automate research 
by using machine-learned models to suggest new exper-
iments or simulations. The resulting machine-driven 
feedback loop of data generation, model retraining and 
improved prediction represents a paradigm shift in 
materials research.

Applications of ML in computational alloy modelling 
range from model-Hamiltonian building to data-centric 
materials science5. The former typically focuses on a 
single material system and requires high-fidelity char-
acterizations. The latter intelligently searches through 
known results and asks broad questions across a large 
set of candidates4. All applications depend on materi-
als representation, one of the most important concepts 
in ML6–12. Representation, the mathematical depiction 
of a material, can be a direct description of the crystal 
structure or a somewhat broad and indirect description, 
ignoring many details (such as a list of elements, com-
position, atomic environments or connectivity). The 
representation components are commonly referred to as 
features and serve as the inputs. An ideal representation 
has four main desiderata.
•	 Invariance. A representation not respecting all the 

symmetries of the system (non-invariant) requires 
more training data because the model must learn 

through the output what was incorrectly fed to 
the input.

•	Uniqueness. A unique representation guaran-
tees that no two materials have the same features. 
A non-unique representation cannot be inverted to 
generate structures, and the degeneracy in the rep-
resentation leads to errors in a machine-learned func-
tion for at least one of the materials with degenerate 
features. Despite these problems, many successful 
representations are not unique10,13.

•	 Stability. In a deformation-stable representation, two 
materials that are merely minor distortions of each 
other have very similar features. An unstable rep-
resentation makes the problem needlessly difficult, 
essentially asking for an interpolation of a discontin-
uous quantity. Uniqueness and stability are difficult 
to obtain: many well-known representations possess 
neither of these properties7,13–15.

•	 Interpretability. An interpretable representation 
informs the user of the reasons behind the algorithm’s 
predictions2,16–18. Interpretability helps to reveal fun-
damental insights into the problem and rationalize 
design principles. Despite its importance, this char-
acteristic is often neglected, owing to implementation 
difficulties19,20.

Here, we provide an overview of ML concepts, 
approaches and results relevant to metal alloys: atomic- 
scale mixtures of two or more species, where at least 
one is a metal and the global character of the mixture 
is metallic21,22. This Review consists of three sections. 
First, the concepts of model-Hamiltonian building and 
data-centric materials science are briefly summarized, 
followed by an overview of computational databases, 
examples of structural representations and approaches 
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for searching for descriptors. Second, notable studies 
are introduced, together with the applications that have 
already been explored. Metallic glasses, high-entropy 
alloys, shape-memory alloys, superalloys, alloys for 
catalysis and alloys for magnetism are included. Third, 
we discuss ML studies for metallurgical alloy process-
ing, mechanical properties (elasticity, strength, ductil-
ity, hardness, toughness, stacking faults, stress hotspots, 
fatigue and cracking, wear and creep) and thermal prop-
erties. An analysis of the many ML-like studies of sem-
iconductor alloys23–25 is beyond the scope of this work; 
for recent reviews, see refs2,26,27. For a description of ML 
methods, we refer readers to refs1,2,28–32.

Approaches
From model Hamiltonians to data-centric materials 
science
Atomistic thermodynamic modelling yields important 
materials quantities, provided the energy model is highly 
accurate (energy differences for many alloy configura-
tions are just a few or a few tens of meV per atom) and 
fast enough to sufficiently sample the appropriate ensem-
ble. Quantum mechanical methods such as density func-
tional theory (DFT) are accurate and generalizable, but 
they are often too slow to calculate thermodynamic aver-
ages at finite temperature. Surrogate models have been 
proposed to tackle the problem. Metal alloys present a 
particular challenge for computational modelling because 
of their tendency to form disordered solid solutions and 
the need to properly account for configurational entropy. 
This problem has been successfully addressed through 
the use of on-lattice (such as cluster expansions33,34) and 
off-lattice approaches (such as Gaussian approxima-
tion potentials9 and atomic cluster expansion12) (Box 1). 
Note that both approaches can lead to interpretable rep-
resentations. Cluster expansions provided an early prov-
ing ground for the application of ML to materials, and, 
thus, much of the early work on machine-learned model 
Hamiltonians was done on alloys.

Although surrogate ab initio models are effective for 
probing material-specific questions, a different approach 
is needed for screening a wide variety of candidates. 
Even before the big-data materials science revolution, 
there was a substantial body of work in the alloy com-
munity (Box 2). Data mining — the extraction of patterns 
and information from large amounts of data — is com-
monly combined with high-throughput computation4 
and becomes effective in this situation. Typically, a 
high-fidelity quantum approach is used to calculate 
a desired target quantity over a very large number of 
candidates and then the results are screened to find the 
most promising materials. The best solution needs to be 
experimentally realizable. Thus, it is fundamental that 
all possible decompositions can be identified to deter-
mine global stability35,36. Recent approaches also try to 
deal with synthesizability of metastable or disordered 
phases37,38 and latent-heat-driven kinetics39.

The dawn of computational databases
The growth of ML applications in materials science is 
intrinsically connected to the blooming of databases — 
experimental (such as the Inorganic Crystal Structure 

Database40) and computational41–44 — and to readily 
available descriptors. The latter are features or combi-
nations of features correlating with observables, and 
they can be used to predict complicated properties4. 
With efficient descriptors, the search for new materi-
als and properties within the repositories can be per-
formed with ML methods31, or even just with data 
mining, depending on whether the optimum candidates 
are already included in the set of calculations. In alloy 
theory, the formation enthalpy (or Gibbs free energy) 
is an obvious descriptor for stability. Combined with 
the cluster expansion technique33,34, it led to a multitude 
of successful studies. As illustrated in Box 1, a num-
ber of algorithms were developed to choose the opti-
mal cluster configurations: cross-validation45, genetic 
algorithms46 and even methods borrowed from signal 
processing, such as compressive sensing47. In addition 
to structural information (when available), alloys are 
commonly represented by feature vectors containing 
composition, often combined with properties of the 
component elements, such as position in the periodic 
table, electronegativity, valence electron concentra-
tions, melting and liquidus temperatures, heat capacity, 
atomic radii and volumes, thermal conductivity and 
diffusivity, and heat of fusion. In the case of models for 
the bulk mechanical properties such as tensile strength 
and hardness, processing conditions such as heat treat-
ment time and temperature, quenching type and cold 
working processes are also often included as features. 
Calculated properties of the material itself, such as cohe-
sive energy, density, mixing enthalpy (for example, from 
the Miedema model), ideal mixing entropy, along with 
atomic structure information, can also be used to predict 
quantities that are computationally difficult to obtain, 
such as elastic moduli48,49.

A strong impetus came from the rapid growth of 
databases, starting in the early 2000s. Following the 
spirit of high-throughout combinatorial experimental 
techniques50, ab initio approaches were adapted to gen-
erate massive amounts of data4 (currently, the AFLOW41, 
OQMD42, Materials Project43 and NOMAD44 reposito-
ries contain millions of calculations with hundreds of 
millions of extracted properties). Databases were used 
to predict new materials and/or to optimize properties, 
often with ad hoc descriptors4. For example, in 2002, a 
DFT evolutionary approach able to find the most sta-
ble configurations out of quaternary fcc and bcc struc-
tures with up to four atoms per cell was proposed51. In 
2003, principal component analysis (PCA) was used 
to data mine missing information in ab initio libraries 
of alloys versus structure prototypes52. This work also 
used the eigenvalues of the PCA expansion to inform 
a self-consistent thermodynamic loop converging to 
the alloy convex hulls52,53. Also in 2003, a multidimen-
sional Pareto optimization was proposed to determine 
alloy solutions having low compressibility, high stability 
and low cost54. In 2006, Bayesian parameter estimation55 
was used to predict the crystal structure of experimental 
binary alloys from the Pauling File project56. Later, in 
2011, a maximum-likelihood approach was proposed57 to  
data mine the Inorganic Crystal Structure Database40  
to discover new compounds through ionic substitutions.
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Macroscopic properties
Beyond merely predicting the existence of compounds, 
ML can be trained to directly predict other observ-
able macroscopic properties, such as hardness, ductil-
ity, toughness and Curie temperature. In 2009, PCA  
was used to show that structure maps representing  
structure–property relationships (electronic features and 
crystal structure parameters) can be reproduced via data 
mining58. In 2018, a random forest (RF) algorithm was 
used to address phonon spectral features, heat capaci-
ties, vibrational entropies and free energies59 to improve 

predictions of finite-temperature thermodynamic sta-
bility. Models can include alloy processing conditions 
as part of the feature vector, to predict the processing– 
microstructure–property60,61 and composition–process– 
property62 relationships. The section on materials  
properties describes several other examples.

Examples of representations for structures
Efficient representations are crucial for ML. For example, 
in 2014, the averaged partial radial distribution function 
of pairwise distances between atoms was combined with 

Box 1 | On-lattice and off-lattice models

lattice-based models
Lattice-based	models	treat	the	problem	of	modelling	configurational	disorder	discretely	(in	fixed	positions,	not	necessarily	
part	of	a	Bravais	lattice).	The	atomic	structure	of	an	alloy	can	often	be	mapped	to	a	single	lattice	(fcc,	for	example)	whose	
sites	are	‘decorated’	by	two	or	more	kinds	of	atoms.	That	configuration	of	atoms	may	be	a	repeating	pattern,	resulting	
in	a	particular	crystal	structure,	or	a	randomized	solid	solution.	In	either	case,	the	atoms	are	assumed	to	reside,	at	least	
approximately,	on	the	sites	of	the	underlying	lattice.	The	premise	that	each	atom	can	be	directly	associated	with	a	
corresponding	lattice	site	is	often	realistic	enough	that	accurate	quantitative	predictions	are	possible.	Many	lattice	
models	consider	only	interactions	within	local	environments	defined	by	cut-off	radii.	They	are	informed	by	vectors	of	
atomic	occupations	in	discrete	positions	(for	example,	the	partial-occupation	approaches269,270),	generating	interpretable	
descriptors	that	can	be	combined	with	machine	learning	to	discover	new	materials129.	Lattice	models	have	the	advantages	of	
speed	and	accuracy	but	the	drawbacks	of	not	providing	forces	and	being	limited	to	a	single	underlying	lattice.	Approaches	
to	building	lattice	models	include	the	cluster	expansion	method33,34	and	its	forerunner,	the	cluster	variation	method271,272.	
Lattice	gas	models	are	closely	related	to	cluster	expansion	and	have	been	used	extensively	in	simulations	of	surfaces	and	
adsorbates273–275.	Despite	lattice	models	having	been	used	for	decades,	innovation	is	continuing.	A	novel	‘low-rank	potential’	
that	expresses	atomic	environments	as	tensors	was	recently	introduced131.	Tensor-train	compression	reduces	the	number	of	
fitting	parameters,	making	this	approach	well	suited	for	modelling	alloys	with	a	large	number	of	components131,134.
Cluster	expansion	became	a	dominant	approach	to	alloy	modelling	starting	in	the	late	1980s	and	is	still	used	extensively.	

The	method,	incorporating	many	concepts	typically	associated	with	data	science	today,	identifies	the	most	significant	
terms	of	a	linear	expansion	of	basis	functions	known	as	cluster	functions,	each	representing	the	interaction	among	atoms	
in	a	‘cluster’,	or	subset,	of	lattice	sites.	In	the	early	stages,	the	cluster	expansion	coefficients	were	found	by	direct	inversion	
or	by	standard	least-squares	regression276.	As	the	method	matured,	and	the	number	of	terms	in	the	expansion	(and	of	data	
points)	changed	from	a	handful	to	thousands,	the	regression	technique	embraced	modern	data-science	approaches,	
including	simulated	annealing,	genetic	algorithms46,277–279,	compressive	sensing47,	regularization	approaches280,	including	
Bayesian	methods179,281–283,	and	different	approaches	to	both	cross-validation45,284	and	training-set	generation285–288.	
The	cluster	expansion	basis	is	an	effective	representation	naturally	including	the	invariances:	the	representations	of	
two	symmetrically	equivalent	configurations	are	numerically	identical.	In	addition,	the	representation	is	stable	against	
small	perturbations:	if	a	small	number	of	the	atoms	in	a	configuration	is	exchanged,	the	related	features	change	by	a	small	
amount.	Lattice	models	treat	configurational	entropy	directly	and	are	extremely	fast.	They	can	be	used	in	large-scale	
Monte	Carlo	simulations	to	perform	thermodynamic	averages	and	search	for	optimal	structures.	Vibrational	contributions	
are	not	typically	included	in	lattice	models,	owing	to	increased	modelling	difficulty289.

Off-lattice models
Off-lattice	models	extend	the	applicability	of	lattice	models290	to	quantities	that	inherently	rely	on	the	details	of	the	atomic	
coordinates,	such	as	phonons,	structural	phase	transitions,	transport	and	specific	heat.	Like	the	cluster	expansion,	many	
off-lattice	models	encode	structural	information	as	a	set	of	local	interactions,	but	they	allow	atoms	to	have	a	continuous	
range	of	positions.	Many	concepts	developed	for	lattice	models	can	be	extended	off-lattice	and	then	used	to	map	structural	
information	to	a	variety	of	material	properties12.	The	most	common	type	of	off-lattice	models,	interatomic	potentials,	predict	
the	potential	energy	(typically	assumed	to	be	the	electronic	ground	state	energy)	as	a	function	of	the	atomic	positions	within	
the	Born–Oppenheimer	approximation.	This	function	is	generally	known	as	the	potential	energy	surface.	The	models	integrate	
electronic	degrees	of	freedom	by	coarse	graining:	the	forces	between	atoms	are	represented	by	classical	interactions	that	
mimic	quantum	mechanics.	Unlike	in	lattice	models,	atomic	positions	are	treated	explicitly.	Two	families	of	potentials	exist:	
simple,	physics-based	potentials	often	having	a	fixed	functional	form	and	adjustable	parameters	(such	as	the	Lennard-Jones		
or	embedded	atom	potentials291)	and	general,	systematically	improvable	interatomic	potentials	(such	as	smooth	overlap	of	
atomic	positions	(SOAP)	or	Gaussian	approximation	potentials8,9,	atomic	cluster	expansions11,12,292–296	and	neural	network	
potentials6,186,297,298).	Symbolic	regression	approaches258,299–302	and	graph	networks20,65,66,303–307	have	characteristics	that	overlap	
with	both	the	physics-based	and	systematically	improvable	potentials.	Off-lattice	models	can	take	advantage	of	additional	
information	in	the	training	data,	such	as	the	first	and	second	energy	derivatives,	and,	in	some	cases,	can	be	used	in	place	of	a	
cluster	expansion308.	Training	does	not	require	structures	to	be	fully	relaxed	(as	in	cluster	expansion),	making	the	procedure	
significantly	faster	(however,	when	modelling	on-lattice	configurational	order	with	an	off-lattice	model	trained	on	unrelaxed	
structures,	a	full	relaxation	of	each	configuration	must	be	performed,	whereas	on-lattice	models	directly	predict	the	energy	
of	the	relaxed	structure)309.	The	simpler	the	on-lattice	and	off-lattice	models	are,	the	more	benefits	they	offer:	they	are	
typically	faster,	require	less	training	data	and	may	be	more	interpretable	than	more	complex	models310.	With	the	availability	
of	so	many	different	off-lattice	models,	there	does	not	seem	to	be	a	clear	winner	in	terms	of	accuracy	versus	efficiency311,312.
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kernel ridge regression to predict the electronic density 
of states at the Fermi level63 (fig. 1a). Representations 
based on connectivity are promising. N-grams (histo-
grams of unique coordination environments and edge 
sequences) are effective in predicting formation ener-
gies and electronic band gaps64. Neural networks (NNs) 
have been constructed from graphs with nodes repre-
senting atoms in the unit cell and edges representing 
atom connections, giving local atomic environment rep-
resentations (fig. 1b). This method has shown reasonable 
accuracy for formation energies, electronic band gaps, 
Fermi levels and elastic properties65,66. Most representa-
tions are local, in real space and might be ineffective for 
characterizing properties in periodic systems (such as 
delocalized features coming from dispersions in recip-
rocal space). Property-labelled materials fragments are 
an example of a descriptor that includes periodicity49: 
after partitioning the crystal structure into atom-centred 
Voronoi–Dirichlet polyhedra (capturing the local envi-
ronment), an adjacency matrix of the graph is con-
structed from the total list of connections, reflecting 
the periodic global topology (fig. 1c). ML also includes 
generative models to design materials, for example, in 
the ‘variational autoencoders’ technique (fig. 1d). These 
mathematical frameworks comprise two deep networks, 
an encoder and a decoder. The first maps data points to 
a low-dimensional continuous vector space — the latent 

space — while the second maps latent vectors back to 
data points. Materials optimization, done in the highly 
simplified continuous latent space, has predicted new 
metastable vanadium oxides67.

Searching for descriptors
Except in the case of physically motivated descriptors4, 
the ML outcome is an ‘impenetrable box’ connecting 
input and outputs with optimized internal parameters. 
Given that descriptors can be combinations of features,  
several directions have recently been proposed to combine  
features into (possibly interpretable) functionals.

Starting from a very large set of mathematical opera-
tions and their combinations, the space of all constructi-
ble formulas can be searched with genetic programming 
or deterministic optimization. The former leads to sto-
chastic optimization; it is the idea behind the Eureqa 
framework approach proposed by Michael Schmidt 
and Hod Lipson in 2009 (ref.68) (fig. 1e). The latter has 
been explored by LASSO (least absolute shrinkage and 
selection operator)69 and its SISSO evolution (sure inde-
pendence screening and sparsifying operator)70 (fig. 1f). 
While not being deterministic, Eureqa has the advantage 
of being able to span larger feature spaces. LASSO and 
SISSO seem more efficient and less biased, giving the 
true optimized descriptor, but the larger computational 
cost hinders the size of the feature space that can be 

Box 2 | When machine learning was done by hand

Alloy	research,	well	positioned	to	leverage	machine	learning,	has	a		
history	of	inventing	and	adopting	computational	approaches.	For	decades,	
researchers	have	developed	new	approaches	that,	if	they	were	to	appear	
today,	would	be	called	machine	learning.	For	structure	determination,	
simple	prototype	clustering	was	performed	quite	early.	For	example,	
structure	maps	were	proposed	by	David	Pettifor	in	the	1980s	from	analysis	
of	experimental	databases313–315	and	later	extended	in	an	automatic	fashion	
to	computational	repositories316.	The	early	structure	prediction	work	by	
Pettifor313–315,	followed	by	that	of	Alex	Zunger317,	is	an	illustrative	example.	
Simple	atomic	features	(such	as	atomic	radii,	electronegativity,	valence	
electrons	and	atomic	environments)	for	each	element	type	were	used	as	
coordinates	to	map	each	candidate	material	into	multidimensional	feature	
spaces.	Materials	with	the	same	crystal	structure	tended	to	cluster	together	
in	the	feature	space.	When	the	crystal	structure	for	a	material	was	as-yet	
unknown,	the	proximity	to	other	structures	in	the	map	became	a	prediction.

The	figure	shows	an	example	of	‘hand-made	machine	learning’.	
Panel	a	shows	a	phenomenological	description	of	structure	as	atomic	
environment:	the	14	most	frequently	occurring	atomic	environment	
types	are	shown	with	their	names.	Panel	b	illustrates	a	frequency	plot	
of	these	14	atomic	environments	found	in	5,086	cubic	intermetallics:	
octahedra,	rhombic	dodecahedra,	icosahedra,	cubooctahedra	and	
tetrahedra	are	the	most	commonly	found	environments.	Panel	c	depicts	
a	section	of	the	3D	pseudopotential	radius318	versus	the	Martynov	
and	Batsanov	electronegativity	(square	root	of	the	average	ionization	
potential	of	the	valence	electrons319;	the	section	is	given	by	an	averaged	
number	of	valence	electrons	<2.74)	for	2,486	single-environment-type	
compounds	(including	binary,	ternary	and	quaternary	daltonide	and	
berthollide	intermetallic	compounds).	Each	symbol	indicates	a	crystal	
structure.	Figure	reprinted	from	ref.320,	Copyright	©	2000,	John	Wiley	
and	Sons.
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explored70. A more in-depth comparison related to the 
application in dielectric breakdown strength prediction 
can be found in ref.71. Recently, there has been an effort 
to use NNs to accelerate the discovery of formulas. An 
example is the AI Feynman project72, combining the 

predictive power of NNs with a brute-force search driven 
by physically motivated heuristic constraints (such as 
dimensional analysis, polynomial fit, separability and 
translational invariance, if appropriate) to perform 
symbolic regression on a set of pre-established features.  
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shell of the ‘partial radial distribution function’, the distribution of pairwise distances between the two atomic species (the 
fraction of atoms of one type in a shell of radius r and width dr centred around an atom of the other type). b | Crystal graph 
convolutional neural networks: crystals are converted to graphs with nodes representing atoms in the unit cell and edges 
representing atom connections. Nodes and edges are characterized by vectors corresponding to the atoms and bonds in 
the crystal, respectively. The graph is then used to train neural network layers to produce the feature vector of the crystal, 
followed by the output layer to provide target property prediction. After the first set of hidden layers, a pooling function 
combines features for each atom into features for the entire crystal. c | Property-labelled materials fragments include 
periodicity by connecting local Voronoi tessellation with global periodic graphs. d | The idea behind variable autoencoders 
is that the encoder maps data points to a low-dimensional continuous vector space — the latent space — where 
optimization (for example of properties and synthesizability) is performed, whereas the decoder maps the optimized 
latent vectors back to data points67. e | Example of possible crossover and mutation steps used to generate new formulas  
in genetic programming, in which formulas are optimized by an evolutionary algorithm that simulates natural selection.  
f | The idea behind SISSO (sure independence screening and sparsifying operator): the iterative deterministic optimization 
combines unified subspaces having the largest correlation with residual errors generated by sure independence screening 
(SIS) with the sparsifying operator (SO) to further extract the best descriptor. The target property, P, at the beginning of  
the cycle is equal to the 0D residual error, Δ0D. Δ is the n-dimensional residual error. ML, machine learning. Panel a reprinted 
with permission from ref.63, APS; panel b reprinted with permission from ref.65, APS; panel c adapted from ref.49, CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/); panel e adapted with permission from ref.268, APS; and panel f adapted 
with permission from ref.70, APS.
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The algorithm seems very promising in rediscovering 
known formulas72: future extension might include more 
complicated functional operations (integrals, deriva-
tives) and the capability to search for relevant features 
within the input data.

Materials families
This section provides an overview of the broad range 
of uses of ML in alloy research: in addition to work 
described here, ML has been applied to materials such 
as superconductors73–76 and phase-change memory  
materials77, but an exhaustive discussion of every 
application is beyond the scope of this Review.

Metallic glasses
Metallic glasses are amorphous alloys in which the 
absence of crystalline order enables unexpected proper-
ties: the lack of slip planes results in high yield strength78 
and wear resistance, whereas corrosion resistance is 
enhanced by the absence of structural defects and grain 
boundaries slowing ion diffusion, making these mate-
rials potentially useful for biomedical implants79. The 
identification of compositions with high glass-forming 
ability is a difficult task. Several different physical mod-
els have been proposed, based on atomic size difference 
and packing density80–83, glass transition and melting 
temperature84–86, and the competition between ordered 
phases87,88. ML methods are being applied to identify 
new glass-forming compositions (TaBle 1).

Glass-forming ability. Glass formation in metal alloys 
has been investigated with a variety of ML approaches, 
including models based on RFs89–91, support vec-
tor machines (SVMs)92, gradient-boosted decision 
trees93, PCA94, NNs95–99, support vector regression and 
Gaussian process models100, and linear regression101. 
Predicted properties related to glass-forming ability 
include reduced glass transition temperature94,96, criti-
cal cooling rate96, undercooled liquid region ΔTx (dif-
ference between the glass transition temperature and 
the crystallization temperature)96,98,101, critical casting 
diameter100, crystallization temperature94,95 and liquidus 
temperature94. Particularly important features include 
the difference between the actual liquidus temperature  
and that expected from a linear interpolation of the 
elemental melting temperatures92, the atomic radii 
difference93, a large difference between the work func-
tion and heat of fusion, few valence electrons and a low 
boiling temperature102.

Machine reading using a classifier based on gradient- 
boosted trees was used to extract data from phase dia-
grams to find deep eutectics93, known to be important 
for glass-forming ability. Eutectic points were character-
ized by the angle formed by the tangents of the liquidus 
lines — the narrower the angle, the deeper the eutectic 
— and by the difference between the liquidus temper-
ature and the temperature obtained from the common 
tangent connecting the maximum temperature of the 
liquidus lines. A region of high glass-forming ability 
was found for compositions with a eutectic angle smaller 
than 75°, where the atomic radius of the majority species 
was slightly smaller than that of the minority species. 

Alloy systems predicted to have a high glass-forming 
ability included Ag–Yb, Mg–Eu, Be–Fe, Ag–Te and  
Ag–Sm, with the composition range from Ag0.206Yb0.794 
to Ag0.326Yb0.674 being particularly promising.

Out of 20 different ML methods applied to a glass 
formation data set with 6,471 alloy compositions102, 
RFs were found to give the best predictions by 100-fold 
cross-validation testing. The data set included the 
critical casting diameter for 5,934 compositions and 
674 critical transformation temperature measurements. 
Key features for glass-forming ability were found to be 
large difference between the work function and heat of 
fusion, few valence electrons and a low boiling temper-
ature. The glass transition, crystallization and liquidus 
temperatures were found to depend on the average melt-
ing temperature, and the liquidus temperature increased 
with decreasing average atomic radius.

Guiding experiments. ML models have been used to 
guide metallic glass synthesis89,90, with the experimen-
tal results used to enhance the training set and retrain 
the models. RF-based models were developed89 to 
investigate glass formation in combination with sput-
tering synthesis experiments90. The original model was 
trained on a set of 5,369 experimentally characterized 
compositions103, 70.8% of which were glass-forming, 
and showed good agreement with experiments for 
the Al–Ni–Zr system (fig. 2a). The Co–V–Zr alloy sys-
tem was synthesized using combinatorial magnetron 
co-sputtering to determine its glass-forming ability as 
a function of composition, and the new experimental 
data were used to retrain the model90. Glass formation 
was observed in a region between Co50Zr50, Co75Zr25, 
V50Zr50 and V75Zr25. Results for original and retrained 
models for Co–Ti–Zr, Co–Fe–Zr and Fe–Ti–Nb are 
shown in fig. 2b. The extra data were downsampled to 
70 points so as not to bias the model based on one alloy 
system; this new data had the advantage of being better  
balanced with respect to the ratio of glass-forming 
to non-glass-forming compositions. The accuracy of  
the retrained model improved by a factor of 3 to 4. The 
model was later expanded to include additional glass 
formation attributes91, such as cluster packing efficiency 
and distance to crystalline compounds, as well as ΔTx 
for 621 alloys.

NNs were used to predict ΔTx and guide the synthe-
sis of Zr–Al–Ni–Cu glasses98. A set of Zr–Al–Ni–Cu 
compositions was fabricated with arc-melting and ΔTx 
was measured; the correlation between predictions and 
experiment was R = 0.9574. The model was then used to 
predict ΔTx for the Al–La–Ni system (fig. 2c).

Elastic properties. Multiple models were trained to pre-
dict elastic properties of metallic glasses100,102. Support 
vector regression gave a very good linear correlation with 
experimental results of up to 0.9799 and a leave-one-out 
cross-validation error of 8.2898 GPa when trained on 
a set of 219 elastic moduli100. RFs trained on bulk and 
shear moduli for 278 bulk metallic glass compositions 
showed linear correlations of 0.9836 and 0.9843 (ref.102); 
smaller atomic volumes gave larger bulk and shear 
moduli.
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Table 1 | Overview of machine learning applications for disordered alloys

Year Description refs

Metallic glasses

2003 Linear regression for supercooled liquid region width for Mg-based alloys 101

2004 NNs to predict crystallization temperatures in Ni–P alloys 95

2007–2013 NNs to predict reduced glass transition temperature, critical cooling rate and undercooled liquid 
region of alloys, and to guide synthesis of Zr–Al–Ni–Cu glasses

96–99

2015 Principal component analysis on a set of 594 bulk metallic glass compositions 94

2016, 2018 RFs used to guide experimental synthesis of Co–V–Zr glasses 89–91

2017 SVM model trained on binary alloy data to predict glass-forming ability 92

2018 Delithiation in amorphous LixSi system modelled using a NN potential 267

2019 Classifier based on gradient-boosted tree to find deep eutectics in phase diagrams 93

2019 Support vector regression and Gaussian process models to predict elastic moduli and critical 
casting diameters of metallic glasses

100

2020 Twenty different ML models applied to glass formation data for 6,471 compositions; also predict 
elastic moduli

102

High-entropy alloys

2008 NNs to investigate Hume–Rothery’s rules for solid-solution formation 116

2014 NNs to predict structure formation (bcc, fcc or mixed phase) in high-entropy alloys 117

2015 Principal component analysis to identify underlying properties determining the formation of fcc 
or bcc solid solutions in TiMnFeNi, MnFeCoNi and TiVMnNb

123

2017 Approach based on multidimensional tensors to extend cluster expansion to include effects of 
relaxations from the ideal lattice in AgPt, AgPtAuPd and AgPtAuPdCuNiAl

131

2017 Gaussian process statistical analysis to predict solid-solution formation 119

2018 Constraint satisfaction algorithm combined with support vector domain descriptor to solve the 
continuous constraint problem to find desired stable phases

122

2018 NNs to predict formation of solid solution, intermetallic or amorphous phase 114

2018 Genetic algorithms, Gaussian process statistical analysis and CALPHAD used to design 
solid-solution hardened Al10Co17Fe34Mo5Ni34 high-entropy alloy

120

2018 Solid-solution hardened bcc Al-Cr-Mn-Mo-Ti alloys designed by a combination of genetic 
algorithms, CALPHAD, Pareto optimization and data mining

128

2019 Active learning machine-trained low-rank potential to run Monte Carlo simulations for MoNbTaW 134

2019 ML spectral neighbour analysis potential to investigate strengthening mechanisms in NbMoTaW 137

2019 k-Nearest neighbours, SVMs and artificial NNs to predict formation of solid solution, intermetallic 
or mixed solid solution and intermetallic phases

115

2019 NNs to find quasi-phase equilibrium for phase-field models for Al-Cu-Mg 118

2019 SVMs to predict phase formation in Co–Cr–Fe–Mn–Ni high-entropy alloys 121

2019 RFs to predict phase formation based on binary alloy phase diagram data 124

2019 MTPs to calculate vibrational energies of VNbMoTaW 132

2019 ML interatomic potential to investigate order–disorder transitions in FeNi and CoCrFeNi 135

2019 MTPs to investigate lattice distortion in CoFeNi 136

2019 Iterative feedback between ML and experiment to develop high-hardness Al–Co–Cr–Cu–Fe–Ni 
high-entropy alloys

138

2019 Gradient boosting trees combined with ab initio and experiment to investigate elastic properties 
of Al0.3CoCrFeNi

139

2019 NNs to find the Al–Co–Cr–Fe–Mn–Ni composition with highest hardness 140

2019 Canonical correlation analysis combined with genetic algorithms to find hard high-entropy 
alloys; hardest alloy is Co33W7Al33Nb24Cr3 at 1084 HV(10.63 GPa)

141

2020 NNs to search for eutectics in Al–Co–Cr–Fe–Ni 142

2020 Logistic regression to predict phase formation in high-entropy alloys 125

2020 Genetic algorithms to find the best combination of descriptors and ML models to predict phase 
formation in high-entropy alloys

130

2020 Bayesian regression to handle underdetermined training data to develop a cluster expansion 
model to predict configuration energies of NbMoTaW, NbMoTaWV and NbMoTaWTi

133

bcc, body-centred cubic; CALPHAD, CALculation of PHAse Diagrams; fcc, face-centred cubic; ML, machine learning; MTP, moment 
tensor potential; NN, neural network; RF, random forest; SVM, support vector machine.
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High-entropy alloys
High-entropy alloys typically have at least four principle 
elements and can form single-phase solid solutions104–110. 
This atomic structure gives them unique properties 
that have applications in a variety of technologies. For 
example, high-entropy alloys demonstrate improved 
fracture resistance at cryogenic temperatures111, and the 
formation of ordered precipitates can be engineered to 
optimize mechanical properties such as the strength–
ductility ratio109,112,113. The complexity of these materials 
poses a challenge for computational researchers, pro-
viding promising opportunities for the application of 
ML (TaBle 1).

Phase formation. Phase (for example, solid solution) 
formation in high-entropy alloys has been investigated 
using NNs114–118, Gaussian process statistical analysis119,120, 
k-nearest neighbours115, SVMs115,121,122 (fig.  2d), 
PCA123, RFs124 and logistic regression125. These studies 
revealed that valence electron concentration114,115,123,125, 
electronegativity114,116, atomic radius115,116 and mixing 
enthalpy123 are all important features in determining phase 
formation. By contrast, the mixing entropy, as obtained 
from the ideal configuration entropy ∑S x x= logi i i, was 
found to be relatively insignificant114,115,125, possibly due to 
ordering effects at finite temperature reducing the actual 
entropy of the material114,126,127. A structural parameter 
based on the crystal system and the unit cell size and shape 
was also found to not be important116, and even counter-
productive for low-solubility/low-concentration systems. 
Valence electron concentration was found to determine 

the atomic stacking character (fcc or bcc)117,128. In general, 
a major limitation to this approach is the accuracy of the 
input data: the atomic radius, in particular, is not always 
well defined116. RFs were used to predict the formation of 
single-phase high-entropy carbides129. The models were 
trained on spectral descriptors for high-entropy mate-
rials obtained with ab initio calculations38. Several new 
Cr-containing compositions were predicted; experimen-
tal synthesis by arc melting and characterization by X-ray 
diffraction confirmed single-phase formation.

Genetic algorithms were used to determine which 
combinations of features and ML models were most 
effective in predicting phase formation130. A total of 
70 descriptors were investigated and model improve-
ment was found to saturate for ∼4 descriptors. SVMs 
with a radial basis kernel performed best at classifying 
solid solution formation or non-formation, whereas the 
NN approach performed best at classifying the type of 
solid solution formed. The genetic algorithm approach 
outperformed other methods for reducing the feature 
space, such as LASSO, RFs, sequential forward selection 
and gradient tree boosting. 12,647 compositions form-
ing high-entropy alloys were predicted: 845 based on an  
fcc lattice, 9,302 based on bcc and 2,500 with dual bcc/fcc  
phase structure. Ten compositions with high classifica-
tion uncertainty were chosen for synthesis: eight were 
found to be forming non-solid solutions, one formed 
a bcc phase and one a dual bcc/fcc phase. The classifi-
ers were retrained using the new data (active learning), 
improving classification accuracy.

Configuration energies. Machine-learned models 
have been used to predict energies for different atomic 
configurations131–133, as an extension or alternative to 
using cluster expansions. A new way to construct lattice 
models based on a low-rank ‘tensor train’ representa-
tion was shown to be particularly effective for alloys 
with a large number of components131. The intera-
tomic potential was trained and validated on ab initio 
calculations for 32-atom cubic cells on the fcc lattice. 
Validation accuracies of 3 meV per atom were achieved 
for the AgPt, AgPtAuPd and AgPtAuPdCuNiAl alloy 
systems. The error depended on the number of differ-
ent columns in the periodic table that the elements came 
from, because replacing an element with one with the 
same number of valence electrons created a more local 
perturbation, making it easier to fit by a short-range 
interatomic potential. The model was fitted to predict 
the formation energies of alloys with up to 23 elements 
on a training set of 1,600 configurations and showed sig-
nificantly lower errors than for a cluster expansion con-
taining nearest-neighbour pairs and triples trained using  
compressive sensing.

Thermo-mechanical properties. Machine-learned 
interatomic potentials have been used to study the 
thermodynamic132,134,135 and mechanical properties136,137 
of high-entropy alloys. A machine-learned low-rank 
potential, trained using active learning on ab initio calcu-
lations for 200 randomly generated configurations, was 
used to run Monte Carlo simulations for the MoNbTaW 
alloy134. The vibrational contribution to the formation 

Fig. 2 | Machine learning for disordered alloys. a | Comparison of machine learning (ML) 
predictions of glass formation with experimental results for Al–Ni–Zr. b | Comparison of 
first-generation and second-generation ML predictions with experiments for Co–Ti–Zr 
(top row), Co–Fe–Zr (middle row) and Fe–Ti–Nb (bottom row). The first column are the 
original ML predictions, the second column are predictions after retraining with new 
experimental data (active learning), the third column are experimental X-ray diffraction 
results and the fourth column shows a binary glass or non-glass result using a threshold 
based on amorphous silica (a-silica). Note how the agreement with the experimental data 
improves going from first-generation to second-generation ML. c | Predicted difference 
between glass transition temperature and crystallization temperature for Al–La–Ni. Large 
differences between the two temperatures, such as in the region encapsulated by the 
black circles, indicate thermal stability against crystallization when the glass is heated. 
d | Phase formation prediction for Co–Cr–Mn by support vector machines. The schematic 
on the right compares a perfect classification to an imperfect one. The plots on the left 
depict the bcc (blue) and hcp (green) phase regions for the Co–Cr–Mn system. The points 
that satisfy the constraints are shown in yellow and red on the top-right plot, and the 
points that do not satisfy them are shown in black on the bottom-right plot. e | Molecular 
dynamics simulation with spectral neighbour analysis potential for Nb–Mo–Ta–W, 
showing Nb segregating to the grain boundaries, while W is enriched in the bulk (bcc). 
f | Ashby plot for total elongation against ultimate tensile strength for eutectic Al–Co–Cr–
Fe–Ni alloys, which overcome the strength–ductility trade-off. AC, partially amorphous 
ribbon formation; AM, fully amorphous ribbon; bcc, body-centred cubic; CR, 
compositions with no appreciable formation of amorphous phase; EHEA, eutectic 
high-entropy alloy; fcc: face-centred cubic; FSDP, first sharp diffraction peak; FWHM, 
full width at half maximum; GFR, glass-forming region; SVDD, support vector domain 
description. Panel a reprinted from ref.89, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/); panel b reprinted with permission of AAAS from ref.90, © The Authors, 
some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 4.0 License 
(http://creativecommons.org/licenses/by-nc/4.0/); panel c adapted with permission 
from ref.98, Elsevier; panel d reprinted with permission from ref.122, Elsevier; panel e 
reprinted from ref.137, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/);  
and panel f adapted with permission from ref.142, Elsevier.
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energy was found to be negligible (<0.1 meV per atom) 
and phase transitions were observed to the B2 structure 
(Mo,W;Nb,Ta) at ∼600 K and then to B2 (Mo;Ta) and 
B32 (Nb;W) at ∼600 K. The model’s energy predictions 
agreed well with ab initio calculations for the ground, 
semiordered and disordered states, deviating by 0.1, 1.7 
and 0.4 meV per atom, respectively.

Machine-learned interatomic moment tensor poten-
tials, which describe the atomic environments with 
moment tensor descriptors, were used to investigate 
lattice distortion in the ternary alloy CoFeNi (ref.136). 
Heating and quenching produced a mixture of static and 
dynamic distortions that reduced the elastic moduli. No 
short-range order correlations were found for Co and 
Ni, but some ordering was found for Fe–Fe and Ni–Fe 
atom pairs. The asymmetry of moment tensor potentials 
enabled them to capture anharmonic contributions to 
the vibrational energy of VNbMoTaW (ref.132).

A machine-learned ‘spectral neighbour analysis 
potential’ was used to investigate the strengthening 
mechanisms in NbMoTaW (ref.137). The potential was 
trained on DFT calculations of a combination of special 
quasi-random, ground state and molecular dynamics 
structures. After equilibration, Nb segregates to the grain 
boundaries, whereas W is enriched in the bulk (fig. 2e). 
The equilibrated alloy has higher strength than the ran-
dom alloy, similar to that of W, the strongest element, 
owing to the Nb enrichment at the grain boundaries 
reducing the von Mises strain.

ML models and data mining have been combined 
with experiment to investigate the mechanical prop-
erties, and, in particular, to optimize the hardness, of 
high-entropy alloys128,138–140. An iterative feedback pro-
cedure between ML predictions and experiments was 
used to develop high-hardness high-entropy alloys in 
the Al–Co–Cr–Cu–Fe–Ni family138. The lowest root- 
mean-square errors were found for support vector 
regression with a radial kernel, back-propagation NNs 
and k-nearest neighbours. After iterating between ML 
and experiment, the composition Al45Co24Cr22Fe5Ni6 
was found, with Vickers hardness of 865 HV (8.48 GPa). 
Introducing materials descriptors, along with mechanical 
properties such as shear modulus and lattice distortion 
energy, reduced the cross-validation error to 54.4 HV 
(0.53 GPa). The highest-hardness composition was 
Al47Co20Cr15Cu5Fe5Ni5, with 883 HV (8.66 GPa), which 
formed a bcc solid solution with a NiAl B2 ordered phase.

A gradient boosting trees approach using weak learn-
ers was combined with ab initio calculations and experi-
mental measurements to investigate the elastic properties 
of Al0.3CoCrFeNi (ref.139). Shapley additive explanations 
showed that the bulk modulus depends on the electron-
egativity of the most electronegative element, whereas 
the shear modulus depends on the least electronegative 
element. The high-entropy alloy was observed to have 
a wide spread of interatomic distances even between 
atoms of the same type. In particular, Cr–Cr distances 
varied based on the other neighbouring atoms, owing 
to magnetic interactions, demonstrating that magnetic 
frustration can drive lattice distortion in these systems.

A NN was trained to find the composition with the 
highest hardness in the AlCoCrFeMnNi high-entropy 

alloy system140. The training set consisted of 91 hard-
ness measurements for binary to hexenary composi-
tions, prepared with vacuum arc melting. Simulated 
annealing was used to find the optimum composition of  
Al24Co18Cr35Fe10Mn7.5Ni5.5 with a predicted hardness  
of 670 ± 98 HV (6.57 ± 0.96 GPa) and a measured hard-
ness of 650 ± 12 HV (6.37 ± 0.12 GPa), exceeding the 
highest value in the literature for this system of 539 HV 
(5.29 GPa). The high hardness is due to bcc/B2 precipi-
tates forming, owing to high Al content. Solid-solution 
hardened bcc alloys were designed by a combination of 
genetic algorithms, CALPHAD (CALculation of PHAse 
Diagrams), Pareto optimization and data mining128.

Compositions formed from a set of 16 elements were 
generated with elemental concentrations varying from 
5 at% to 35 at% in steps of 1 at%. 3,155 Pareto-optimal 
alloys were found, and experimental synthesis and charac-
terization of a selected composition indicated a Vickers 
hardness of 6.45 GPa (658 HV), one of the hardest  
reported for a metal alloy with such a low density.

Canonical correlation analysis was combined with 
genetic algorithms to design hard high-entropy alloys141. 
Input data consisted of the Vickers hardness for 82 sys-
tems. Multiple regression was performed with canonical 
correlation analysis to predict the presence of bcc or fcc 
solid solutions or of intermetallic phases, and to predict 
the Vickers hardness. Hardness was found to increase 
with ideal mixing entropy and decrease with valence 
electron concentration and mixing enthalpy. Canonical 
correlation analysis was used to construct a fitness func-
tion for a genetic algorithm search in a composition 
space of 16 metallic elements. Seven of the predicted 
alloys were synthesized: hardnesses ranged from 277 HV 
(2.72 GPa) to 1,084 HV (10.63 GPa); five of the alloys had 
hardness greater than 700 HV (6.87 GPa).

Identifying eutectics. An artificial NN was used to search 
for eutectics in the Al–Co–Cr–Fe–Ni high-entropy 
alloy system142. It was found that eutectic points were 
most common for compositions with Cr concentration 
lower than 25% and Al concentration between 15% 
and 20%, whereas the distribution was similar across 
concentrations of the other three elements. Increasing 
the Ni concentration resulted in fcc formation, whereas 
more Fe resulted in bcc formation, owing to changes 
in the valence electron concentration. The resulting 
eutectic alloys had improved mechanical properties; 
in particular, they overcame the strength–ductility 
trade-off (fig. 2f).

Catalysts. The IrPdPtRhRu high-entropy alloy was 
used as a discovery platform for catalysts for the oxy-
gen reduction reaction143. Sequential least-squares pro-
gramming was used to find compositions giving optimal 
adsorption energies, according to the Sabatier model for 
catalytic activity. The optimum five-component compo-
sition was found to be Ir10.2Pd32Pt9.3Rh19.6Ru29.8, whereas 
relaxing the restriction on the number of elements gave 
the optimum composition of Ir17.5Pt82.5, with a predicted 
activity 28 times higher than Pt. Adjusting the adsorp-
tion energies to account for strain gave an optimum 
composition of Ir59.1Pt40.9.
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Shape-memory alloys
Shape-memory alloys are systems that undergo simul-
taneous size and shape changes during a phase transfor-
mation. Their applications include sensors, actuators and 
biomedical implants, such as stents. Relevant properties 
include the transformation temperature, shape-memory 
recovery ratio, superelasticity and hysteresis due to 
differences in the heating and cooling transformation 
temperatures, which can lead to fatigue. ML has been 
incorporated into experimental design to find alloys with 
low thermal hysteresis144, to simultaneously optimize 
thermal hysteresis and transition temperatures145, and to 
develop precipitation-strengthened NiTi shape-memory 
alloys146. Models have also been constructed to predict 
transition temperatures62,147 and to investigate laser 
powder-bed fusion fabrication148. An overview of ML 
works on shape-memory alloys is provided in TaBle 2.

ML and adaptive design have been used to inves-
tigate and optimize shape-memory behaviour in the 
Ti50Ni50−x−y−zCuxFeyPdz alloy system144,145,147 (fig. 3a). This 
system undergoes cubic to rhombohedral (B2 to R)  
or cubic to orthorhombic monoclinic (B19, B19′) phase  
transitions. To find compositions with minimum ther-
mal hysteresis (ΔT), Gaussian process models and 
support vector regression with linear and radial basis 
function kernels were fitted to data obtained by synthe-
sizing and characterizing 22 compositions144. Efficient 
global optimization, knowledge gradient and pure 
exploitation ‘min’ algorithms were used to propose new 
compositions. A combination of support vector regres-
sion with radial basis functions and knowledge gradient  
was found to work best, finding a new alloy, Ni46.7Ti50Cu0.8 
Fe2.3Pd0.2, with ΔT = 1.84 K. Ab initio calculations were 
performed to check the energetics of transformations, 
indicating that the low ΔT for this composition was due 
to a low activation barrier and small energy difference 
between the phases. Models were also constructed for the 
transition temperatures of this system using linear and 
polynomial regression, and support vector regression147. 
Polynomial regression (linear in valence electron num-
ber and Pauling electronegativity, and quadratic in 
Waber–Cromer’s pseudopotential radii) gave a good 
mix of accuracy and interpretability, and worked well 
for 23 other test systems from the literature. The model 
was used in combination with efficient global optimi-
zation, knowledge gradient and maximum exploitation 
algorithms to find the composition with the highest tran-
sition temperature. The best candidate was Ti50Ni25Pd25, 
with a predicted transition temperature of 189.56 °C and 
a measured value of 182.89 °C. The Pareto front (fig. 3b) 
for transition temperatures versus thermal hysteresis was 
investigated for this system, to minimize both properties 
simultaneously145. Gaussian process regression and sup-
port vector regression with a radial basis function kernel 
were fitted to experimental data. Maximin and centroid 
exploration algorithms were more effective than ran-
dom, pure exploitation or pure exploration approaches 
at finding the Pareto front in as few cycles as possible.

A 2D time-dependent Ginzburg–Landau model for 
the austenite to martensite phase transition and elasti-
city was developed for alloy systems such as FePd and 
InTl (ref.149). The model describes the free energy as a 

function of stress and strain, whereas the dilational 
stresses due to dopants are modelled by Gaussian dis-
tributions centred on the impurity. The model was used 
to search for materials with low energy dissipation, 
model led as a function of dopant potency, distribution 
and concentration.

Bayesian optimal experimental design was applied to 
Ni4Ti3 precipitation-strengthened NiTi shape-memory 
alloys146. Stress–strain equations were solved using finite 
element modelling, using elastic constants of B2 auste-
nitic and Ni4Ti3 rhombohedral structures obtained from 
first-principles calculations, and the results were used 
to train a Gaussian process regression surrogate model. 
Selection of test compositions was based on expected 
hypervolume improvement and pure exploitation. The 
method was used to search for an alloy with an austenitic 
finish temperature of 30 °C and a specific hysteresis tem-
perature of 40 °C. No composition was found satisfying 
these criteria, so the Pareto front was generated to find the 
compositions closest to the target. The search efficiency 
was optimized by using the algorithm from the very 
start to choose the initial training data points, instead of 
initializing with multiple randomly chosen points.

Laser powder-bed fusion was investigated for the 
additive manufacturing of shape-memory alloys148. NiTi 
is difficult to machine and very sensitive to composition: 
small variations in Ni content can change the transfor-
mation temperature by 100 °C. Fabrication success using 
laser fusion of powder was evaluated as a function of 
linear, surface and volume power density, which are 
functions of laser power, scan speed and hatch spacing. 
Linear discriminant analysis revealed that high values 
of linear power density led to high printability, whereas 
hatch spacing made little difference. Linear power den-
sity had little effect on transition temperatures, but the 
volume power density did have an effect. Hatch spacing 
affected microstructure and transition temperature, but 
not printability.

Support vector regression, RFs and Gaussian pro-
cess regression were trained to predict the transition 
temperatures and hysteresis of NiTiHf shape-memory 
alloys as a function of composition and heat treatment 
processing62. Owing to the nature of the dependence of 
the phase transformation rate on the processing con-
ditions, the models were more accurate when the heat 
treatment time and temperature were represented by 
logarithmic and sigmoid functions. The models worked 
reasonably well for transition temperatures but were 
unreliable for predicting hysteresis values.

Superalloys
Ni single-crystal superalloys display high creep resist-
ance due to precipitation of the L12 γ′ intermetallic phase 
in the austenitic fcc γ solid-solution matrix with coher-
ent {100} interfaces150. ML has been used to design new 
alloy compositions with optimized properties151–154 and 
to model the lattice misfits150,155 and interfaces156 of the γ 
and γ′ phases (TaBle 2).

Superalloy design. Gaussian processes were combined 
with CALPHAD and genetic algorithms to design 
Ni-based superalloys151,152. Thermodynamic phase 
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Table 2 | Overview of machine-learning applications for shape-memory alloys, superalloys, catalysts and 
magnets

Year Description refs

Shape-memory alloys

2016–2018 ML and adaptive design to optimize thermal hysteresis and transition temperatures in the 
Ti50Ni50−x−y−zCuxFeyPdz alloy system

144,145,147

2017 2D time-dependent Ginzburg–Landau model for austenite to martensite phase transition and 
elasticity in alloy systems such as FePd and InTl

149

2018 Bayesian optimal experimental design for Ni4Ti3 precipitation-strengthened NiTi shape-memory 
alloys

146

2018 Linear discriminant analysis to optimize laser powder-bed fusion for additive manufacturing  
of NiTi alloys

148

2021 Support vector regression, RFs and Gaussian process regression to predict composition–
process–property relationship for NiTiHf alloys

62

Superalloys

1998 NNs to model lattice parameters for γ and γ′ phases as function of composition and temperature 155

2013, 2016 Gaussian processes combined with CALPHAD and genetic algorithms to design Ni-based 
superalloys

151,152

2017 NNs combined with CALPHAD to find Ni-based compositions optimizing fatigue life, yield stress, 
tensile strength, γ′ fraction and Cr activity

153

2018 ML models to predict the misfit between the γ and γ′ phases 150

2018 NNs combined with genetic algorithms to design Ni-based superalloys for ultra-critical  
steam plants

154

2019 ML models to predict the energy of different configurations to model γ–γ′ interfaces 156

Catalysis and alloys

2012–2019 Cluster expansions to predict the structures and properties of alloy nanocatalysts 179–185

2014, 2015 NN potentials to identify structures and properties of Au–Cu alloy nanocatalysts 187,188

2015, 2017 NNs to predict adsorption energies on alloys as a function of physical properties of the surface 
and the local environment of the adsorption site

166–168

2015, 2019 Bayesian cluster expansions to predict equilibrium surface structures and catalytic activities  
of bulk Pt–Ni alloys

177,178

2017 ‘Bootstrapped projected gradient descent’ to identify relevant descriptors for CO binding 
energies on alloy surfaces

169

2017 NNs to predict surface segregation in the Au–Pd alloys 175

2017 SOAP descriptors to predict the structures and activities of Rh–Au nanoparticles 191

2018 Multiple types of regression evaluated for predicting adsorption energies on embedded 
single-atom catalysts

170

2018 NN potential to study atomic order in icosahedral Cu–Ni–Pt nanoparticles 189

2018 SOAP descriptor to predict hydrogen adsorption energies on small Au–Cu clusters 192

2018, 2020 ML to predict adsorption energies based on the local environment of the adsorption site  
to guide discovery of new catalysts for CO2 reduction and hydrogen evolution

172,174

2019 Lattice pair potential to calculate adsorption energies and optimize the composition  
of a high-entropy alloy for catalysing oxygen reduction

143

2019 Graph NNs to predict adsorption energies on a variety of surfaces 173

2019 SISSO algorithm to identify descriptors for binding energies for representative adsorbates  
on alloy surfaces

171

2019 NN potentials to accelerate searches for low-energy structures for small bimetallic and 
trimetallic clusters

190

Magnetism and alloys

2014 On-the-fly ML to analyse XRD data for Fe–Co–X (X = Mo, W, Ta, Zr, Hf, V) films to find phases  
with strong magnetic anisotropy

195

2017 NNs to extract order parameters corresponding to phase transitions from Monte Carlo 
configuration data for ferromagnetic Ising model

193

2017 NNs to find topological phase transitions in the Kitaev chain, phase transitions in the Ising model 
and many-body localization transitions in disordered quantum spin chains

194

2018 CALPHAD and k-nearest neighbours to find processing–structure–property linkages in soft 
magnetic alloys, such as FINEMET alloys forming Fe3Si precipitates

196

2019 RFs, NNs, ridge regression and kernel ridge regression to predict the Curie temperature 197

CALPHAD, CALculation of PHAse Diagrams; ML, machine learning; NN, neural network; RF, random forest; SISSO, sure independence 
screening and sparsifying operator; SOAP, smooth overlap of atomic positions; XRD, X-ray diffraction.
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stability was predicted using the Thermo-Calc software 
with the TTNi database. Acceptable microstructures 
were restricted to those containing only γ, γ′ and M23C6 
phases, avoiding Laves and other deleterious phases. 
Gaussian process regression was trained on experimental 
data to predict ultimate tensile stress, yield stress, creep 
rupture stress, and the γ and γ′ lattice parameters. Input 
features included composition and processing history 
(forging, cold deformation and treatment temperature) 
and the output was creep rupture stress. The optimal 
alloy minimizing the creep rupture stress per unit  
cost had a γ′ content of 24.8% at 750 °C: low enough to  
be easily weldable and avoid strain–age cracking151.  
To find an alloy realistic for high-temperature struc-
tural applications, the ultimate tensile strength, yield 
stress and creep rupture stress were maximized, while 
the γ–γ′ misfit parameter and brittle temperature range 
were minimized152. 5,669 alloys were predicted on  
the Pareto front. A slightly cheaper and more weldable 
alternative to Inconel 740H (In740H) and Haynes 282 
was proposed, where more γ′ phase due to increased Al 
content offset the loss of strength due to lack of Nb. An 
alternative to Alloy 263 was proposed that avoided the 
formation of η platelets due to lower Ti content.

NNs and CALPHAD were used to find Ni-based 
superalloy compositions that optimize fatigue life, yield 
stress, tensile strength, γ′ fraction and Cr activity (for 
corrosion resistance)153. The models were trained on 
experimental data for properties as a function of com-
position and heat treatment, and were combined with 
an optimizer incorporating error estimates (Bayesian 
bootstrap approach) to search for an alloy with a yield 
strength exceeding 752 MPa at high temperatures. 
Experimental verification was performed on the opti-
mal alloy: the γ′ fractional volume was 51% and the yield 
stress was 765 MPa.

NNs and genetic algorithms were combined to design 
Ni-based superalloys for ultra-critical steam plants 
that improved on In740H (ref.154). Training data were 
extracted from the literature for 580 instances: model 
inputs included the concentrations of 14 elements, and 
γ and γ′ contents; outputs included the γ–γ′ mismatch, 
yield stress and creep rupture life. Experimental valida-
tion indicated that the new alloy had a yield strength 
of 597 MPa at 750 °C and a creep life exceeding 3,691 h 
(with a prediction of 5,800 h at 150 MPa), extrapolated to 
9,100 h at 135 MPa, compared with In740H, which has a 
yield strength of about 580 MPa at 750 °C and a creep life 
of about 10,000 h at 150 MPa stress.

γ and γ′ phase properties. NNs were used to model the 
lattice parameters for the γ and γ′ phases as a function 
of composition and temperature already in 1998 (ref.155). 
The lattice mismatch between the γ and γ′ phases in Ni 
superalloys controls the coarsening behaviour and the 
dislocation glide at the γ–γ′ interface. Composition and 
temperature were used as input for the model, and the 
lattice constants were the output. Al was found to be 
most important for the lattice constant of the γ phase 
and Ti most important for the γ′ phase. Lattice constants 
for γ were sensitive to Mo content and for γ′ to Nb con-
tent. The lattice constant of the γ phase was generally 

more sensitive than that of the γ′ phase to composition 
changes.

ML models including support vector regression, 
sequential minimal optimization regression and multi-
layer perceptron were used to predict the misfit between 
the γ and γ′ phases150. The training set consisted of data 
for 136 alloys extracted from the literature, with features 
including composition, dendrite positions, specimen 
thickness and temperature. Multilayer perceptron had 
the lowest mean average error and root-mean-square 
error. The model was validated against experimentally 
measured misfits, where it outperformed empirical 
models from the literature.

The γ–γ′ interface in the Ni 617 superalloy was inves-
tigated using linear regression, ridge regression, kernel 
ridge regression, LASSO, support vector regression and 
Bayesian ridge regression to predict the energy of differ-
ent configurations156. All methods outperformed cluster 
expansion, with kernel ridge regression giving the lowest 
errors156.

Catalysis and alloys
ML is increasingly being used to discover or design new 
catalysts (TaBle 2). Here, we focus on alloy catalysts. For 
a more general discussion of the use of ML in catalysis, 
we refer the reader to other reviews157–160.

Computational searches have long made use of 
simple descriptors to predict catalytic activity without 
the need to explicitly model all steps of the chemical 
reaction. Adsorbate binding energies are particularly 
effective descriptors, as they can be used to estimate the 
activation energy through the Brønsted–Evans–Polanyi 
principle161,162. This is a perfect scenario for ML deploy-
ment. For example, a model equivalent to a pairwise 
cluster expansion was constructed to predict adsorption 
energies for O and OH on different sites in IrPdPtRhRu 
high-entropy alloys, with an estimated prediction error 
of less than 0.1 eV (ref.143). However, material-specific 
surrogate models are generally not well suited for high- 
throughput screening, owing to the computational 
expense of enforcing compatibility with each of the  
candidate materials.

An alternative approach, generally less accurate but 
more amenable to high-throughput screening, is to 
predict adsorption energies based on the physical des-
criptors of the bare surface. For example, physical and 
chemical reasoning was used to identify the surface 
electronic d-band centre as a descriptor of adsorption 
energies163,164. ML can extend the formalism by identify-
ing additional descriptors and more complicated models 
for adsorption energies70,165–173. Some of the early work 
focused on developing NN models to predict adsorption 
energies as a function of properties of the surface and 
the atoms near the adsorption site166–168. These models 
were used to screen alloy surfaces for CO2 reduction168 
and methanol electro-oxidation167. Similarly, ML mod-
els were developed for predicting adsorbate binding 
energies based on the properties of the adsorption site 
(such as the coordination number) and neighbouring 
elements (such as Pauling electronegativities)172. These 
models were used to guide high-throughput ab ini-
tio calculations of adsorbate binding energies on ideal 

Nature reviews | Materials

R e v i e w s



0123456789();: 

intermetallic surfaces, leading to 100 promising catalysts 
for CO2 reduction or hydrogen evolution. Following 
these predictions, Cu–Al alloy catalysts have recently 
been developed that reduce CO2 to ethylene with very 
high selectivity174 (fig. 3c). Finally, adsorption energies 
on a variety of surfaces can be predicted using graph 
NNs, in which the nodes of the network are mapped to 
atoms and the edges are mapped to connections between 
neighbouring atoms173.

Models that relate physical descriptors to adsorbate 
binding energies can also be used to identify the most 
rele vant descriptors. For example, the relative importance 

of different physical descriptors was determined through 
sensitivity analysis of the developed NN models167,168, and 
bootstrapped projected gradient descent169 was used to 
identify relevant descriptors for CO binding energies 
on some of the same alloys167,168. It was found that, in 
addition to characteristics of the electronic d-band,  
the work function is also a relevant descriptor169. Sub-
sequent work using multiple regression trees to predict 
the CH3 adsorption energy on single-atom catalysts 
embedded in Cu surfaces found that the group and the  
surface energy of the doped element are the most pre-
dictive descriptors out of a dozen evaluated170. Later on,  
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the SISSO algorithm70 was used to obtain descriptors 
for binding energies for six different representative 
adsorbates171. Using this approach, the d-band centre 
was rediscovered as the best simple descriptor, and more 
complex descriptors that had significantly lower errors 
on the alloy surfaces in the validation set were identified.

A great challenge in developing alloy catalysts is that 
adsorbate binding energies (and, hence, catalytic acti-
vity) can be highly sensitive to the atomic structure of 
the surface, often quite different from that of the under-
lying bulk material. Some degree of surface segregation 
is common in substitutional alloys (the concentration of 
one species is higher near the surface than in the bulk). 
Likewise, atomic order near the surface can be signifi-
cantly different than in the bulk: an ordered intermetallic 
phase may have increasing disorder near the surface or 
a disordered solid solution may be covered by a mono-
layer skin consisting nearly entirely of a single element. 
Predicting the atomic structure of alloys’ surfaces can be 
accomplished with ML energy models175,176. When com-
bined with descriptors of catalytic activity, this approach 
helps rational design of new catalysts. Bayesian cluster 
expansion and Sabatier volcano plots were used to pre-
dict the activities for the oxygen reduction reaction on 
(111) surfaces of ordered Pt3Ni (ref.177). The work was 
extended to Pt–Ni alloys in the entire Pt-rich portion 
of the temperature–composition phase diagram178 
(fig. 3d). It was found that slightly Pt-rich Pt3Ni should 
have the maximum activity, in good agreement with 
experimental results.

Alloy nanoparticles are of particular interest, owing 
to their high surface-to-volume ratios and the ability to 
adjust the catalytic properties by tuning particle shape. 
The size and complexity of these catalysts limits the 
extent to which ab initio methods can be used to directly 
model them, but this problem can be overcome through 

the use of ML surrogate models. For example, cluster 
expansion has been used to predict equilibrium177,179–181 
and non-equilibrium alloy nanoparticle structures182,183, 
surface d-band centres179 and adsorbate binding 
energies180,184,185. Behler–Parrinello NN potentials were 
used186 to identify equilibrium structures of Au–Cu alloy 
nanoparticles in vacuum187 and aqueous environments188. 
Coupling these potentials with ab initio calculations 
of adsorbate binding energies on small nanoparticles 
provided insights into solvation’s effects on nanoparti-
cle activity. NN potentials were similarly used to study 
surface segregation in icosahedral Cu–Ni–Pt nanoparti-
cles and to identify design guidelines for oxygen reduc-
tion catalysts189. NN potentials have also been used to 
accelerate searches for low-energy structures for small 
bimetallic and trimetallic clusters190. Gaussian approxi-
mation potentials9 with the SOAP descriptor8 were used 
to model adsorption of N, O and NO on Rh–Au alloy 
surfaces191. This method could predict turnover frequen-
cies for NO decomposition at different surface sites on 
cubooctahedral Rh–Au nanoparticles of varying size, 
composition and atomic order. The SOAP descriptor 
was generally found to perform at least as well as other 
leading descriptors in predicting hydrogen adsorption 
energies on small Au–Cu clusters192.

Magnetism and alloys
ML has been used to model magnetic properties, with 
applications ranging from investigating phase transi-
tions in Ising-type models193,194 to analysing experimen-
tal phase diagrams of specific magnetic alloys195, as well 
as modelling processing–structure–property linkages196 
and predicting Curie temperatures, TC (ref.197) (TaBle 2).

NNs were used to extract order parameters corre-
sponding to phase transitions (such as TC/J) from raw 
Monte Carlo configuration data for a ferromagnetic 
square-lattice Ising model, ∑H J σ σ= − ij i

z
j
z  (ref.193). 

The models were also applied to the 2D square ice 
Hamiltonian and the Ising lattice gauge theory. The 
ordinary NNs had an accuracy of only 50% for the lat-
ter system, so a convolutional NN was used instead, 
which had accuracy of 100% at T = 0 and T = ∞, with 
T J N/ = 1/log ( )*

e
, where T* is the crossing temperature 

and N is the number of spins in the system.
NNs were used to find topological phase transi-

tions in the Kitaev chain, phase transitions in the Ising 
model and the many-body localization transition in 
a disordered quantum spin chain194. Supervised and 
unsupervised methods were combined, by bootstrap-
ping the supervised model to unsupervised groups, 
finding patterns in the data and letting the user 
decide if changes corresponded to phase transitions. 
The method was successfully applied to the Ising 
model and the many-body localization transition: 

⋅∑ ∑ ∑H J S S h S= +i
L

i i α x y z i
L

i
α

i
α

=1 +1 = , , =1 .
CALPHAD was combined with k-nearest neighbours 

models to find processing–structure–property link-
ages in soft magnetic alloys196, particularly FINEMET 
systems198 that form Fe3Si precipitates. Metamodels to 
describe the crystallization of Fe3Si domains and to pre-
dict mean particle radius and volume fraction as a func-
tion of composition, temperature and holding time were 

Fig. 3 | Machine learning for shape-memory alloys, catalysts and magnets. a | Adaptive 
design workflow for the optimization of the shape-memory alloy Ti50Ni50−x−y−zCuxFeyPdz.  
b | Pareto front (PF) for optimal combination of thermal hysteresis and transition 
temperature for shape-memory alloys generated using adaptive design. c | t-Distributed 
stochastic neighbour embedding (t-SNE) representation of how the CO adsorption energy 
varies among adsorption sites on Cu alloys based on local environment and composition. 
Sites that are close to each other tend to have similar features. Labels 1–5 indicate 
different types of sites for Al–Cu alloys: Al-heavy Cu sites, Cu-heavy Cu–Cu sites, balanced 
Al–Cu sites, Al-heavy Al–Al sites and Al-heavy Al sites, respectively. d | The current density 
(i) of (111) surfaces of Pt–Ni alloys in the Pt-rich region of the phase diagram, relative to 
that of Pt(111) (iPt), as predicted using a Bayesian cluster expansion. e | Magnetic and 
coercive field maps and structural property maps for a Co–Fe–Mo system generated  
by experiments guided by on-the-fly machine learning. Out-of-plane (OOP) hysteresis 
loops are shown for different compositions (left), along with typical OOP and in-plane (IP) 
hysteresis loops (top right). The coercive field map as a function of composition is shown 
on the centre right and the clustering results on the bottom right. Clustering techniques 
were used to group structurally similar regions together, with similar compositions shown 
by same-coloured dots in the bottom-right plot. f | Predicted Curie temperatures, TC,  
for Al–Co–Fe. Crosses and circles indicate experimental data included and not included in 
the training set, respectively; numbers 1, 2 and 3 correspond to the known stoichiometric 
phases Co2FeAl, Fe2CoAl and Fe3Al. ΔECO, DFT-calculated change in energy upon CO 
adsorption; ΔT, thermal hysteresis; DFT, density functional theory. Panel a adapted from 
ref.144, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/); panel b adapted 
from ref.145, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/); panel c 
reprinted from ref.174, Springer Nature Limited; panel d adapted with permission 
from ref.178, PNAS; panel e reprinted from ref.195, Springer Nature Limited; and panel f 
reprinted with permission from ref.197, APS.
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trained on CALPHAD data as an alternative to compu-
tationally more expensive Thermo-Calc modelling. The 
standard FINEMET composition was varied according 
to Fe72.89+xSi16.21−xB6.9Nb3Cu1, with −3 < x < 3. Errors rela-
tive to Thermo-Calc were generally small (<1%), with 
the largest errors occurring for volume fraction for short 
annealing times (∼15%), owing to the small volume 
fraction leading to large relative errors.

On-the-fly ML was used to analyse X-ray diffraction 
data from combinatorial synthesis of Fe–Co–X (X = 
Mo, W, Ta, Zr, Hf, V) films to find phases with strong 
magnetic anisotropy195. Mean shift theory, a clustering 
method based on non-parametric density estimation, was 
used to group X-ray diffraction data into similar phase 
regions. Non-negative matrix factorization was used to 
identify the fraction of different phases present in multi-
phase X-ray diffraction spectra and, thus, build phase 
diagrams. The Fe78Co11Mo11 composition was found 
to have an increased coercive field (fig. 3e): a genetic 
algorithm search found a low-energy P4/m tetragonal 
structure with a matching X-ray diffraction pattern.

The Curie temperatures of magnetic materials 
were predicted using RFs, NNs, ridge and kernel ridge 
regressions197. RFs were found to work best, with R2 
of 0.81 for cross-validation and 0.87 for testing. The 
absolute error was 57 K and the models were generally 
more accurate for TC > 300 K. The model accurately 
predicted trends for the Co–Mn, Fe–Ni and Ni–Rh sys-
tems. When applied to the Al–Co–Fe system (fig. 3f), 
the model underestimated the TC of the ternary Heusler 
compounds but ordered them correctly.

Materials properties
This section illustrates the uses of ML for research in 
alloy processing, and mechanical and thermal properties 
(TaBle 3).

Metallurgical alloy processing
Supervised learning algorithms can be used to construct 
phenomenological processing–property relationships 
that, in many cases, have greater predictive accuracy than 
commonly used physical approximations. Some of the 
earliest examples of the application of ML to alloys are in 
predicting flow stress as a function of temperature, strain 
and strain rate. A multilayer NN was used to predict the 
flow stress of medium carbon steel, and its predictions 
were more accurate than those of a semi-empirical 
constitutive model199. At around the same time, a NN 
approach was developed to predict the cold rolling force 
for steel based on the Bland–Ford–Ellis model200. Several 
groups have subsequently successfully applied NN 
methods to construct relationships between processing 
parameters and physical properties for other alloys201–207 
(for example, hot deformation behaviour of the A356 alu-
minium alloy; fig. 4a). The success of the NN approach 
can be attributed to its ability to flexibly interpolate a 
curve, which allows it to account for phenomena that 
show up empirically (in the training data) but may not be 
well captured by simplified physical models.

ML has also been successfully used to predict the 
phase evolution and distribution in alloys as a function 
of processing parameters. A NN model was developed 

that could accurately predict the volume fractions of the 
α and β phases in Ti alloys as a function of heat treat-
ment temperature and composition208. NNs were used 
to model time–temperature–transformation diagrams 
for Ti alloys60,61, particularly for the α (hcp) to β (bcc) 
phase transition, to predict the processing–micro-
structure–property relationship. Inputs were chemical 
compositions and the outputs were time–temperature–
transformation diagrams and the martensite start 
temperature. Sn, Cr and V were observed to increase 
martensite start time and reduce the start temperature, 
whereas Al increased start temperature and reduced start 
time, and the effect of Mo was not systematic. A model 
was trained to predict mechanical properties61, includ-
ing tensile strength, elongation, reduction in area, fatigue 
strength and fracture toughness, where the inputs were 
composition and heat treatment type. Increased temper-
ature reduced tensile strength and increased elongation, 
and hardness increased with Al content.

Bayesian NNs209 and Gaussian processes210 were used 
to model austenite formation in steel. Model inputs con-
sisted of the heating rate and the fractions of different 
elements, and the outputs were the austenite onset and 
completion temperatures. A maximum in the ratio of 
onset/completion temperature to heating rate was attrib-
uted to the presence of retained austenite: high heating 
rates cause the austenite onset temperature to be reached 
before the retained austenite has time to transition to fer-
rite. The austenite onset temperature falls with increas-
ing carbon content and the completion temperature 
goes through a minimum at the eutectoid temperature. 
The onset and completion temperatures increase with 
Mo, Nb, Ti and V concentration and decrease with Mn 
and Cu concentration, whereas the effects of Co, W, B, 
N and P are small. The NN erroneously predicted that 
Ni would increase the onset temperature, but this was 
corrected by the Gaussian process models. The best 
NN had a better root-mean-square error than Gaussian 
processes, but this network was selected from a set of 
models that were generally worse.

NNs were trained to predict the martensite start tem-
perature and austenite stabilization in steels as a func-
tion of composition and austenite grain size211,212. Models 
were tested on 12Cr-1Mo and 9Cr-Mo high-alloy steels211 
and high-strength low-alloy steels212. The martensite 
start temperature was predicted to decrease with Mn, Ni 
and C concentration and to increase with Co, Mo, V and 
Nb concentration; these results were generally consistent 
with MTDATA thermodynamic modelling213. W inclu-
sion was predicted to increase the start temperature, in 
contrast with experiments. Martensite start temperature 
increased with increasing austenite grain size. Low car-
bon content resulted in a higher austenite temperature 
to get the same grain size, resulting in fewer defects and, 
thus, easier martensite transitions.

In recent years, there has been an interest in using 
ML to optimize additive manufacturing processes. The 
additive manufacturing of stainless steel was optimized 
by developing a Gaussian process model that could pre-
dict the porosity of a material as a function of selective 
laser melting parameters214 (fig. 4b). Gaussian processes 
have also been used to predict the remelted depth of 

www.nature.com/natrevmats

R e v i e w s



0123456789();: 

Table 3 | Overview of machine learning applications for metallurgical processing, and mechanical and 
thermal properties

Year Description refs

Metallurgical processing

1995 NNs to predict flow stress of medium carbon steel 199

1996 NNs to predict cold rolling force for steel based on the Bland–Ford–Ellis model 200

1996, 1999 Bayesian NNs and Gaussian processes to model austenite formation in steel 209,210

1999–2013 NN methods to construct relationships between processing parameters and physical properties 
for alloys

201–207

2000, 2004 NNs to model properties including time–temperature–transformation diagrams for Ti alloys 60,61

2002, 2003 NNs to predict martensite start temperature and austenite stabilization in steels as a function of 
composition and austenite grain size

211,212

2015 NN model to predict volume fractions of α and β phases in Ti alloys as a function of heat treatment 
temperature and composition

208

2016 Gaussian process model to predict porosity in stainless steel created by additive manufacturing 214

2016 ML to accelerate characterization of alloy microstructure 219

2017 ML to guide choice of processing conditions to dramatically reduce number of trials 218

2018, 2020 Gaussian processes to predict remelted depth of powder-bed-fused stainless steel as a function of 
laser power and scan speed

215,216

2019 Deep convolutional NNs to automate microstructure image segmentation in high-carbon 
stainless steels

220

Mechanical properties

1999 NNs and neurofuzzy networks to model threshold fatigue in Ni superalloys 231

1999 Bayesian framework NNs to design ferritic creep-resistant steels 232

2001 NNs to predict strength, ductility, hardness and toughness for Ti alloys 202

2004 NNs to predict strength, ductility, hardness and toughness for maraging steels 203

2004 NNs to optimize Charpy-impact toughness for welds 226

2005 NNs to predict strength and ductility for alloy steels 222

2007 NN and genetic algorithms to design a transformation-induced plasticity steel with low Si content 242

2008 NNs to predict strength, ductility and hardness for steels 223

2009 NNs to predict strength and ductility for Cu alloys 224

2009 NNs and orthogonal design to optimize wear resistance of chromium white cast iron 228

2013 SVMs to model wear in ‘flotation balls’ used for milling Cu ore 229

2013 NNs to model ductile damage in steel 247

2016, 2017 General ML models for elastic properties trained on data calculated from first principles 48,49,221

2016 NNs, k-nearest neighbours, classification and regression trees, and SVMs to predict strength and 
ductility for cast iron

225

2017 NNs to predict strength and ductility for Al alloys 234

2017 ML methods including RFs, SVMs and NNs to predict stacking fault energy in austenitic steels 244

2017 , 2018 Bayesian networks to model crack formation and propagation in β-Ti alloys 235,236

2018 NNs to design hard Mo-based alloys for forging die applications 227

2018 Linear regression and principal component analysis to model fatigue in polycrystalline Ti alloys 230

2018 ML methods to infer the intrinsic mechanical material properties from indentation measurements 240

2018 k-Means algorithm to classify acoustic emission waveform data to detect fractures within the Al 
2043-T3 alloy

241

2018 RF classification models to identify stress hotspots (grains experiencing high stress) 245,246

2019 RF nearest neighbour, linear regression and ridge regression to model creep in stainless steel alloys 233

2019 NNs to model crack formation and propagation in steel 237

Thermal properties

2014 Least-squares, partial least-squares, Gaussian process and support vector regression to predict 
melting temperatures

250

2014 RFs to predict thermal conductivity of half-Heuslers 251

2014 Classification trees to identify compositions and features leading to high thermoelectric figure of 
merit in half-Heuslers

253

2016 Materials recommendation engine to find promising thermoelectric materials: Heuslers TiRu2Ga, 
TiRu2ln and MnRu2ln, and ternary germanides

254

2017 , 2018 RFs to predict thermodynamic stability and vibrational energies 59,252

ML, machine learning; NN, neural network; RF, random forest; SVM, support vector machine.
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powder-bed-fused stainless steel as a function of laser 
power and scan speed215,216.

One of the most promising applications of ML to 
alloy processing is in the automated synthesis, pro-
cessing and characterization of alloys. By coupling ML 
algorithms with robots, a fully autonomous system can 
be created that efficiently develops alloys with desired 
properties217. ML can be used to guide the choice of the 
next set of processing conditions in a way that dramat-
ically reduces the number of trials that must be con-
ducted before an optimal set of conditions is found218 
(fig. 4c). Similarly, characterization can be accelerated by 

using ML to minimize the number of samples that must 
be collected by a microscope to accurately characterize 
an alloy’s microstructure219. Characterization can also 
be automated by taking advantage of the tremendous 
progress that has recently been made in computer vision. 
For example, a deep convolutional NN was trained to 
automate microstructure segmentation in high-carbon 
stainless steels220. When combined in an automated 
environment, such tools have the potential to dramat-
ically increase the efficiency of the design and discov-
ery of new alloys and the optimization of processing 
conditions.

Mechanical properties
ML models have been trained to predict the mechanical 
properties of metal alloys, ranging from general models 
for elastic properties trained on data calculated from first 
principles48,49,221 to models of macroscopic properties such 
as hardness, toughness and strength202,203,222–227, as well as 
phenomena such as wear228,229, fatigue230,231, creep232,233, 
hydrogen embrittlement234 and crack formation and 
propagation235–237 in specific alloy systems (TaBle 3).

Elastic properties from DFT data. Models based on gra-
dient boosting decision trees were trained on large online 
databases of calculations of bulk and shear moduli48,49. 
Features included composition-averaged properties of 
the component elements48,49 and ab initio-calculated 
properties of the actual compound, such as the cohe-
sive energy48. The most predictive features included 
the cohesive energy and the volume per atom. Models 
for mechanical properties are programmatically acces-
sible through an online application programming 
interface238,239.

Experimental interpretation. ML models assist in 
the analysis and interpretation of mechanical testing 
methods. A combination of Gaussian process mod-
elling, finite element analysis, Bayesian inference and 
Markov chain Monte Carlo was used to infer the intrin-
sic mechanical material properties from indentation 
measurements240. The method was applied to the Al 6061 
alloy and good values were obtained for the yield stress, 
but estimating hardening values would have required 
much larger strains.

An unsupervised k-means algorithm was used to 
classify acoustic emission waveform data to detect frac-
tures within aircraft-grade, precipitate-hardened Al 
2043-T3 alloy241. Acoustic emission data were coupled 
with direct fracture observation to identify waveform 
features corresponding with fracture formation. The 
data were then clustered using an unsupervised k-means 
ML algorithm to find waveforms that could be used to 
detect the presence of fractures.

Strength, ductility, hardness, toughness. NNs202,203,222–227,234,242,  
k-nearest neighbour225, classification and regression trees225, 
χ-square automatic interaction detection225 and SVMs225 
were trained to predict mechanical properties such as 
tensile strength202,203,222–225,234, yield strength202,203,223–225,227,234, 
elongation202,203,222–225,234, reduction in area202,203,222,223, 
hardness202,203,223,227 fracture toughness202,203 and impact  
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Fig. 4 | Machine learning for alloy processing. a | Comparison between flow stresses 
obtained experimentally, from a neural network (NN) model and from a constitutive 
equation for the A356 aluminium alloy at a strain rate of 0.001 per second at different 
temperatures. b | Porosity for steel materials created by additive manufacturing as 
predicted by a Gaussian process model trained using only the initial set of observations 
(left). The corresponding initial prediction standard error, with training data marked by 
the white dots (right). Regions with relatively high standard error were identified as 
those in which additional sampling would be particularly beneficial. c | The number of 
trials required to find the optimal candidates for different material properties using four 
methods guided by machine learning, compared with random guessing (red). The steel 
results include both composition and process optimization. Panel a reprinted with 
permission from ref.207, Elsevier; panel b reprinted with permission from ref.214,  
Elsevier; and panel c reprinted from ref.218, Springer Nature Limited.
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toughness203,226 of steels203,222,223,242, cast iron225, welds226 
and Ti-based202, Cu-based224, Al-based234 and Mo-based227 
alloys. Input features included alloy compositions along 
with processing and testing parameters, such as cold 
deformation degree203, ageing temperature and time203, 
heat treatment temperature and time202,234, testing tem-
perature202,226 and welding parameters, such as heat 
input and interpass temperature226. Training data were 
extracted from literature sources such as the CASTI Metals 
books and the ASM handbooks, or were generated by 
experimental synthesis and characterization225.

The models were used to explore the effects of com-
position and processing on the mechanical properties 
of alloys and were used in conjunction with optimiza-
tion algorithms to design new materials with enhanced 
properties. A model for the properties of maraging 
steels203 was able to predict the effect of Co–Mo inter-
actions on martensite start temperature and hardness, 
as well as the optimum composition for the C250 alloy. 
The model also predicted that Cu speeds up age hard-
ening by nucleating precipitate formation. Models to 
classify the properties of nodular cast iron and austem-
pered ductile iron predicted that adding carbides would 
increase the wear resistance of the materials, whereas 
the ductility of austempered ductile iron would increase 
with austenite content225; Cu, Mn and Cr would reduce 
strength, whereas Ni would increase it. An ensemble of 
ten NNs were trained on industrial data to predict the 
strength and ductility of alloy steels as a function of com-
position and tempering temperature222. Multiobjective 
optimization was performed to find the Pareto-optimal 
solution, using the strength Pareto evolutionary algo-
rithm to simultaneously optimize the tensile strength, 
the reduction in area and elongation, and their standard 
deviations. For high-temperature Ti-based alloys, the 
mechanical properties were predicted to be generally 
stable up to around 500 °C and start to degrade above 
600 °C, which was in agreement with experimental 
observations, whereas the alloying elements Al and V 
were predicted to increase tensile strength and reduce 
elongation202.

A transformation-induced plasticity steel with 
low Si content was designed using NNs and genetic 
algorithms242. The concentration of all elements except 
P in the Fe–C–Mn–Si–Al–Mo–Cu alloy system was 
varied, and different treatment temperatures were 
investigated. Dendrites of δ-ferrite were found to form, 
replacing the allotriomorphic ferrite instead of retaining 
austenite. Uniform elongation by 23% was observed (no 
necking) by strain-induced transformation of retained 
austenite to martensite.

NN models were combined with optimization algo-
rithms to maximize the Charpy impact toughness of 
welds226. When varying the Ni, Mn and C concentra-
tions, the linear optimizer failed to find the optimum, 
whereas the other methods predicted a composition 
with a toughness of 87 ± 20 J (the experimental value 
was measured to be 101 J). Varying the concentration 
of all 13 components using a local/hybrid optimizer, 
which explored the composition space more thoroughly 
than other methods, produced a composition with an 
increased interpass temperature (300 °C), a Charpy 

toughness of 86 ± 20 J at −60 °C and a room-temperature 
yield strength of 840 ± 105 MPa.

NNs were used to optimize the yield stress and hard-
ness of Mo-based alloys for forging die applications227 
and were trained using CALPHAD/SSOL6 data to pre-
dict phase stability. The logarithm of likelihood was 
maximized so that the optimizer improved the least opti-
mized property, and the composition space was explored 
in a random walk. The new alloy had a predicted yield 
stress of 722 MPa, a hardness of 2.274 GPa (232 HV) and 
a cost of $42 per cycle, which is less than the current 
least expensive alloy, TZC, at $52 per cycle. Synthesis 
and experimental testing indicated that the alloy had 
4 wt% HfC, a Mo-rich matrix, was thermally stable and 
had properties similar to those predicted by ML.

RFs, linear least square, k-nearest neighbour and NN 
regression were used to predict fatigue strength, frac-
ture strength, tensile strength and hardness of steels243, 
and symbolic regression was combined with genetic 
programming to generate equations describing these 
properties as a function of composition and tempering 
temperature. RFs worked best for predicting fracture 
strength, NNs for the other properties.

Stacking fault energy. Several different methods, 
including RFs, SVMs and NNs, were used to predict 
the stacking fault energy in austenitic steels244. This 
energy determines plastic deformation mechanisms: a 
value below 20 mJ m−2 results in transformation-induced 
plasticity in the form of martensitic transformations, the 
range 20 mJ m−2 to 45 mJ m−2 gives twinning-induced 
plasticity, whereas slip processes dominate for values 
greater than 45 mJ m−2. For stacking fault energy clas-
sification, RFs were found to be slightly better than the 
other methods: a 10% false positive rate compared with 
13% for SVMs or artificial NNs. The misclassification 
was primarily between low and medium or medium and 
high stacking fault energies, with the models being very 
reliable at distinguishing between low and high stacking 
fault energies.

Stress hotspots. Stress hotspots (grains experiencing 
high stress) were identified using RF classification 
models245 and different feature selection methods were 
compared246. The Schmid factor (optimal orientation 
of the slip system) was found to be the most important 
feature, with hotspots found in grains with low values. 
Another important feature in fcc structures was found 
to be the angle between the loading direction and the 
<100> crystal direction, and small grains were found to 
have higher stress245. Different feature selection meth-
ods were used to select the best features to build new RF 
models246. With all features, the area under the curve was 
71.94%, whereas with selected features only, it was 81%, 
with similar accuracy for all feature selection methods. 
FeaLect (an improvement on LASSO) has advantages 
over other methods: LASSO tends to arbitrarily select 
one feature from a strongly correlated set, Pearson cor-
relation assumes features are independent, recursive fea-
ture elimination and correlated feature selection do not 
give a quantitative ranking and RF permutation accu-
racy importance tends to eliminate strongly correlated 
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features, even if they are strongly predictive. FeaLect 
predicted that hcp grains oriented so that the c-axis is  
perpendicular to the strain axis tend to be stress hotspots.

Fatigue and cracking. NNs231,237,247, neurofuzzy net-
works231, Bayesian networks235,236 and PCA and linear 
regression230 were used to model fatigue230,231, crack for-
mation and propagation235–237, and ductile damage247 in 
Ni superalloys231, polycrystalline Ti microstructures230, 
β-Ti alloys235,236 and steel237,247.

Threshold fatigue in Ni superalloys was modelled 
using neural and neurofuzzy networks231. Large grain 
sizes resulted in low yield stress but also in a high fatigue 
threshold, owing to the associated closure effects. The 
necklace grain structure was found to have little effect 
on the models, owing to the few data points in the 
original set.

Bayesian networks were used to investigate crack 
front propagation in β-Ti alloys235, such as VST-55531 
(ref.236). Fatigue indicator parameters were calculated 
from the micromechanical force field data, represent-
ing slip systems and strains. Analysis using Bayesian 
networks indicated that the different fatigue indicator 
parameters had similar predictive ability, except for total 
plasticity, which was significantly worse than the other 
indicators. The model was found to be reliable for pre-
dicting failure close to the crack front when residual life 
was low, but was untrustworthy far from the crack front. 
The model for VST-55531 (ref.236) was found to generally 
work well for intragranular crack propagation, but had 
problems predicting propagation across grain bounda-
ries and needed a minimum distance to the first grain 
boundary to properly sample the analysed slip direction.

Deep NN models were developed to predict solid-
ification crack susceptibility in welds in sheet metal 
stainless steel237. Longitudinal Varestraint test data taken 
from the literature included composition, welding cur-
rent, voltage and velocity, applied strain and total crack 
length. PCA was used to reduce input data dimension-
ality to 15 and 10 principle components; however, this 
worsened the model accuracy. Pearson correlations of 
0.89, 0.89 and 0.93 were obtained for the crack length 
test sets using SVMs, shallow NNs and a deep NN, 
respectively. The model also predicted the effects of 
Mn, Ti, N and Si on the total crack length, and a high 
Cr-to-Ni ratio was found to give better crack resistance.

NNs were used to determine the Gurson–Tvergaard–
Needleman ductile damage parameters during sheet 
metal forming in steel247. These parameters, based on 
the void volume fractions and nucleation strains, were 
used to model the elliptical bulge test and Erichsen cup-
ping test: the resulting finite element model identifies the 
location of the fracture reasonably well.

Several regression models were used to investigate 
the processing–composition–fatigue strength (maxi-
mum stress for a certain number of cycles before break-
ing) relationships for carbon, low-alloy, carburizing and 
spring steels248,249. Training data were taken from the 
National Institute of Materials Science (NIMS) database 
and features included composition, processing details 
such as heat treatment conditions and mechanical prop-
erties such as yield strength and hardness. Tempering 

temperature was found to be the most important feature, 
partly owing to high temperatures being combined with 
carburization steps. Other important features included 
carburization time and temperature, diffusion time and 
temperature, and quenching media temperature, with 
the most important element in the composition being C.  
An online tool has been made available for generating 
predictions using the models249.

Wear. SVMs with radial, exponential radial and polyno-
mial basis kernels were used to model wear in ‘flotation 
balls’ used for milling Cu ore229, with the exponential 
radial basis kernels giving the lowest root-mean-square 
errors. The wear rate of the flotation balls was found to 
reduce both with increasing hardness and, in the case of 
low-hardness compositions, with increasing Mn content.

NNs combined with orthogonal design were used 
to optimize the wear resistance of chromium white cast 
iron228. Cu was found to be the most important element, 
then Si, Mn and Cr. An expression for the wear rate 
was obtained using quadratic regression in addition to 
the NN model. For an additional data set generated for 
testing, the quadratic regression model had a maximum 
error of 188.2%, whereas the error for the NN was just 
3.1%, indicating that the NN was much more generally 
applicable when it came to predicting behaviour outside 
of the training set.

Creep. Creep in stainless steel alloys was modelled using 
RF, nearest neighbour, linear regression, kernel ridge 
regression and Bayesian ridge regression233. Pearson 
correlation and maximum information correlation 
were used for feature selection, with stress and creep test 
temperature found to be the most important. All models 
except for kernel ridge regression had accuracy greater 
than 90% when trained with just composition and stress. 
With all features included, only RF, nearest neighbour 
and Bayesian ridge regression had accuracy above 90%.

Bayesian NNs were used to design ferritic creep- 
resistant steels232. Data were extracted from the literature 
for Fe–2.25Cr–1Mo (a bainitic steel for use up to 565 °C) 
and Fe–(9–12)Cr (a martensitic steel). Input variables 
included composition, heat treatment type, temperature, 
duration and cooling rate, and the output was the rupture 
stress as a function of time and temperature. 10CrMoW 
was correctly predicted by the model to have a higher 
rupture stress than 2.25Cr–1Mo. Error bars were larger 
for 10CrMoW and for higher rupture times, owing to 
less data availability. Co was found to increase strength, 
Ni and Al to reduce it. Cu and W tend to form a Laves 
phase intermetallic, weakening the material, but W with-
out Cu increases strength. Two new steel compositions 
were proposed, with more W and no Cu, Ni, Al or Si.

Thermal properties
ML has been applied to predict thermal properties, 
including melting temperature250, thermal conduc-
tivity251, vibrational energy contribution to thermo-
dynamic stability59,252 and the thermoelectric figure of 
merit (zT)253,254. Four types of regression were compared 
for predicting melting temperature250: least squares, par-
tial least squares, Gaussian process and support vector. 
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Support vector regression gave the best predictions for 
single-component and binary-component solids. RFs 
were leveraged in 2014 (ref.255) to optimize the thermal 
conductivity of half-Heuslers251. In 2017, Natalio Mingo 
and colleagues presented a very interesting compari-
son: experiments versus ab initio results252. The authors 
trained RFs to predict the stability of experimentally 
reported half-Heusler compounds and compared the 
results with several ab initio studies. Some inconsisten-
cies were found and were attributed to factors beyond 
those considered by usual ab initio phase stability cal-
culations based on formation enthalpies. To enhance 
prediction power at finite temperatures, RFs were also 
used to address phonon spectral features, heat capacities, 
vibrational entropies and vibrational free energies59.

ML approaches were used to search for materials with 
a high thermoelectric figure of merit253,254. Classification 
trees were used to identify compositions and features 
leading to high zT in half-Heuslers253. Large lattice 
parameters and a wide band gap (at high temperatures) 
or large hole effective mass (at room temperature) 
tended to produce high zT. A ML recommendation 
engine (thermoelectrics.citrination.com) was used to 
find materials with a high zT (ref.254). Promising can-
didates included Heusler structures with compositions 
TiRu2Ga, TiRu2In and MnRu2In, as well as ternary 
germanides such as materials in the Mn–Ru–Ge and 
Dy–Ru–Ge systems.

Future directions
ML will play an essential role in addressing challenges 
that are too difficult for traditional modelling. Going 
forwards, it is particularly likely to have a large impact 
in the following areas.

Autonomous materials design
Autonomous design and optimization will combine ML 
with active learning to choose synthesis priorities2,144 
and will include generative models for materials predic-
tion. By balancing exploration (gathering new data in 
areas where data are sparse) with exploitation (search-
ing for optimal properties), automated machinery will 
be capable of generating large volumes of high-quality 
experimental data by running around the clock.

Complex problems
The unavoidability of disorder in systems with a large 
number of species37 will require the use of ML for the 
development of industrial superalloys and high-entropy 
systems106,256. Similarly, ML will be the key to understand-
ing systems where direct modelling of processes and 
properties is too expensive, such as glass formation89,90 or 
magnetic ordering193,194,197. The characterization of grain 
boundary chemistry for its role in corrosion processes, 
microstructure kinetics and plasticity is another very 
difficult problem that is already being tackled by ML. 
Methods such as symbolic regression may yield human- 
interpretable models that provide new insights into the 
fundamental factors governing the behaviour of com-
plex systems68,257,258. Similarly, NNs such as autoencoders  
may be used to find compact latent representations with 
physically interpretable variables259,260.

Machine-learned force fields
The development of general-purpose interatomic poten-
tials is one of the most promising applications of ML to 
alloy research. These potentials can extend simulation 
timescales and length scales, and, via active learning, 
achieve predictive accuracy comparable with that of 
ab initio calculations. We anticipate that such models 
will be used to simulate increasingly realistic systems 
(such as polycrystalline materials, composites, inter-
faces, microstructures, materials with defects and sur-
faces) and, eventually, to accelerate the development of 
new alloy-based technologies. To such extent, contin-
ued innovation will be necessary to improve accuracy, 
training and performance speeds. In particular, advances 
in active learning, regularization and the identification 
of compact, physically meaningful representations are 
likely to have significant impact.

Quantum calculations
DFT, one of the most successful and widely used 
methods in atomic-scale alloy modelling, relies on 
approximations to calculate material properties from 
first principles. These approximations include the use 
of an approximate exchange-correlation functional 
(as the exact form remains unknown) and the use of 
pseudopotentials or projector-augmented waves. The 
speed and accuracy of a DFT calculation depends, to 
a large extent, on the quality of these approximations. 
ML holds the promise of improving these methods by 
systematically fitting them to highly accurate experi-
mental and/or computational data, while satisfying 
known physical constraints2. The use of ML to gener-
ate exchange-correlation functionals is emerging as  
a particularly active field of research261–264.

Data standardization and integration
ML requires large data sets of both positive and nega-
tive results for training and testing, generated using con-
sistent methodologies and distributed in standardized, 
interoperable formats. To address the latter issue — the 
variety of interfaces and formats used by materials data-
bases — the Open Databases Integration for Materials 
Design (OPTIMADE) consortium has developed a 
universal application programming interface265, provid-
ing a common search syntax and a standardized out-
put format. The Novel Materials Discovery (NOMAD) 
repository44 aggregates materials data from multiple 
sources to create a centralized resource.

Delta learning
Models trained on the differences between large sets 
of inexpensive, low-fidelity data and small sets of 
high-fidelity data (for example, using computational 
methods that go beyond local density approximate/
generalized gradient approximation or experimental 
means) can be used to ‘bootstrap’ the larger database 
to the higher fidelity level of the smaller one. The 
model learns the difference by fitting to the entries 
common to both data sets. The outcome is a ML model 
that can make predictions consistent with the physics 
included in the more expensive method. Delta learning 
has already been tested in a handful of cases and will 

Nature reviews | Materials

R e v i e w s

http://thermoelectrics.citrination.com


0123456789();: 

develop into a standard method in the toolbox of the 
materials scientist266.

Conclusions
ML is a revolutionary tool in alloy research. It is ena-
bling a metallurgical renaissance. Combined with 
databases and high-throughput characterization, this 
approach can already solve outstanding materials 

problems. In this Review, we have briefly described the 
state of the field and analysed several concepts, meth-
ods and applications. The partnership between ML 
and alloy research will rapidly adapt to the challenges 
waiting at the horizon and continue its unstoppable 
momentum.
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