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A B S T R A C T

Most DFT practitioners use regular grids (Monkhorst-Pack, MP) for integrations in the Brillouin zone. Although regular grids are the natural choice and easy to
generate, more general grids whose generating vectors are not merely integer divisions of the reciprocal lattice vectors, are usually more efficient (Wisesa et al.,
2016). We demonstrate the efficiency of generalized regular (GR) grids compared to Monkhorst-Pack (MP) and simultaneously commensurate (SC) grids. In the case of
metals, for total energy accuracies of one meV/atom, GR grids are 60% faster on average than MP grids and 20% faster than SC grids. GR grids also have greater
freedom in choosing the k-point density, enabling the practitioner to achieve a target accuracy with the minimum computational cost.

1. Introduction

High throughput materials design has become an effective route to
material discovery with many successes already documented [2–31].
The creation of large material databases is the first step in high
throughput approaches [32–51]. Computationally expensive electronic
structure calculations generate the data for the databases and limit the
extent to which data analysis tools, such as machine learning, can be
applied. Increasing the speed of these calculations has the potential to
significantly increase the size of these databases and the impact of
material predictions.

Most electronic structure codes perform numerical integrals over
the first Brillouin zone, which converge extremely slowly in the case of
metals. Dense sampling of the Brillouin zone, required for high accu-
racy, is computationally expensive, especially when implementing hy-
brid functionals or perturbative expansions in density functional theory
(DFT) [52]. High accuracy is important because the energies of com-
peting phases are often similar and even small errors can affect the
prediction of stable materials.

Methods for k-point selection have not changed much since
Monkhorst and Pack published their influential paper over 40 years ago
[53]. Their method was quickly accepted by the community due to its
simplicity and ability to generalize previous methods [54,55]. Sampling
methods that improve upon Monkhorst-Pack (MP) grids have been far
less prevalent [1,56–58].

In this paper, we compare the k-point selection method promoted
by Wisesa, McGill, and Mueller [1] (WMM) to the standard MP grids
and to another common method in the alloy community, which we

refer to as simultaneously commensurate (SC) grids. This paper serves to
reinforce and quantify the claims made by WMM, as applied to calcu-
lations typically used for alloys and for some high-throughput studies.

2. Background

Over the past 40 years, only a few k-point selection methods have
been proposed in the literature [1,53–57]. Many of these so-called
special point methods have focused on selecting points that accurately
determined the mean value of a periodic function defined over the
Brillouin zone because the integral of a periodic function over one
period is simply its mean value. Other factors that have been considered
in developing special point methods are selection of grids with a con-
sistent density in each direction and full exploitation of symmetry.

Baldereschi introduced the mean-value point of the Brillouin zone
[54], the first special point method. In this approach, the periodic
function to be integrated is written as a Fourier expansion:
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where k is the wavevector, cn is the n-th expansion coefficient, and the
sum is over over all lattice points Rn. Baldereschi noted that the integral
of f k( ) within the first Brillouin zone (i.e., over one period of f (k)), is
proportional to the leading coefficient, c0, in the Fourier expansion,
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where Ω is the volume of the reciprocal cell. He replaced the analytic
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integral of the periodic function with a numeric integral (sum over j in
Eq. (3))—equivalent in the limit of infinite sampling points—and re-
placed the periodic function with its infinite Fourier expansion (sum
over n in Eq. (3)):
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where wj is the integration weight of the j-th k-point. In the final step of
Eq. (3), each term (sum over j) is a numeric integral of the n-th basis
function in the Fourier expansion of f k( ) (denoted as In in what fol-
lows). Baldereschi’s method selected k-points so that the leading terms
after c0 integrate to zero:

This is an accurate approximation when the Fourier coefficients
converge rapidly to zero, as is the case with insulators and semi-
conductors. Baldereschi’s approximation is ineffective for metals be-
cause the integral over the occupied parts of the band structure has
discontinuities, and the Fourier series converges very slowly.

Chadi and Cohen extended the mean-value point by introducing sets
of k-points whose weighted sum eliminated the contribution of a
greater number of leading basis functions [55]. Their sets of k-points
could be made as dense as desired.

The most popular k-point selection method was created by
Monkhorst and Pack [53] (MP). They established a grid of points that
generalized both the mean-value point of Baldereschi and its extension
by Chadi and Cohen and which was equivalent to points used by Janak
et al. [59] MP grids are given by the relation

u u uk b b bprs p r s1 2 3= + + (4)

where b b,1 2, and b3 are the reciprocal lattice vectors, u p q q(2 1)/2p = − −

for p q1, 2, ,= … , and q an integer that determines the grid density. The
same relation holds for ur and us. In other words, the generating vectors
of MP grids are simply integer divisions of the reciprocal lattice vectors.

Froyen generalized the MP points, which he called Fourier quad-
rature points, by eliminating the restriction that the vectors that defined
the grid be parallel to the reciprocal lattice vectors [56]. However, he
did require the grid to be commensurate with the reciprocal lattice and
to have the full point-group symmetry of the crystal.

Moreno and Soler [57] introduced the idea of searching for k-point
grids with the fewest points for a given length cutoff—a parameter that
characterized the quality of the grid and was closely related to the
k-point density. Their method constructs superlattices of the real-space
primitive lattice. The dual of the superlattice vectors form the k-point
grid generating vectors. By selecting superlattices that maximize the
minimum distance between lattice points (i.e., by choosing fcc-like
superlattices), they obtain k-point grids that are bcc-like. Grids that are
bcc-like have the smallest integration errors at a given k-point density.
(This is evident in Fig. 6.) Moreno and Soler further improved Brillouin

zone sampling by finding the offset of the origin that maximized the
symmetry reduction of the grid.

In their recent paper, WMM point out that the lack of popularity of
Moreno and Soler’s approach is due to the computational expense of
calculating many Froyen grids and searching for the ones with the
highest symmetry reduction. They used the term Generalized Monkhorst-
Pack (GMP) grids to refer to Froyen grids with the highest symmetry
reduction for a given k-point density. We refer to these grids as
Generalized Regular (GR) grids since they are simply generalizations of
the regular grids used in finite element, finite difference, and related
methods. WMM precalculated the grids, and stored the ones with the

Fig. 1. In order to isolate the effect of the Brillouin zone shape and size on total
energy error when comparing crystal structures of different shapes and sizes
(top row), the energy of supercells (bottom row) crystallographically equivalent
to single element, primitive cells were compared. The total energy per atom
should be the same for all equivalent cells.

Fig. 2. An example of simultaneously commensurate grids. The cells for each
crystal are shown in both real and reciprocal space. In reciprocal space, we
include two k-point grids of different density. Simultaneously commensurate
grids eliminate systematic k-point error (between two commensurate struc-
tures) by using the same grid for both the parent cell (red cell) and the su-
percells (yellow and blue). However, some grids may not be allowed (crossed
out) for a given supercell because they are incommensurate with the reciprocal
cell. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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highest symmetry reduction in a database that can be accessed via an
internet request.

3. Methods

We compare the total energy errors of MP, SC, and GR grids for
different k-point densities over calculations of nine different elements
(all of which are metallic), many cell shapes, and cell sizes from 1 to 14
atoms. In total we compare errors across more than 7000 total energy
calculations. One k-point grid is considered superior to another if it
requires a smaller irreducible k-point density to reach a specific accu-
racy target (for example 10 3− eV/atom). The method that requires the
smallest irreducible k-point density is the one we regard as best suited
for high throughput and machine learning applications.

To isolate error arising from k-point integration, the different cells
were crystallographically equivalent to single element, primitive cells,
as illustrated in Fig. 1. We did this to study how k-point error depends
on the Brillouin zone shape and size; this is an important consideration
in high-throughput studies where total energy differences between
competing phases are critical.

The grid types we compared were MP grids (generated by AFLOW’s
algorithm [32]), SC grids [56] (examples of SC grids can be found in
Fig. 2, details of SC grid generation can be found in the appendix), and
GR grids (generated by querying WMM’s k-point server) [60]. We ran
DFT calculations using the Vienna Ab-initio Simulation Package (VASP)
[61–64] on nine monoatomic systems—Al, Pd, Cu, W, V, K, Ti, Y, and
Re—using PAW PBE pseudopotentials [65,66]. The supercells of cubic
systems varied between 1 and 11 atoms per cell, while the hexagonal
close packed (HCP) systems had 2–14 atoms per cell. We used VASP 4.6
for all calculations1. For MP and SC grids the target number of k-points
extended from 10 to 10,000 unreduced k-points The range of k-points
for GR grids was 4–150,000 k-points2.

The converged total energy, the energy taken as the error-free
“solution” in our energy convergence comparisons, was the calculation
with the highest k-point density for each system. Because MP and SC
grids are difficult to generate at comparable densities, GR grids were
used to generate the converged total energy.

4. Results

In Fig. 3, we show the convergence for the MP, SC, and GR grids with
respect to the k-point density, i.e., k-points/Å−3. The first thing to note is
the large spread in the convergence. This spread reduces the reliability of
high-throughput databases and is perhaps higher than one might expect.
Note that the size of the total energy convergence envelope (variance) gets
bigger with increasing k-point densities. Additionally it can be seen that
each method has the same variance at all k-point densities.

In order to quantify the efficiency of GR grids relative to SC and MP
grids, we studied the rate of energy convergence with respect to the
irreducible k-point density, i.e., the number of irreducible k-points di-
vided by the volume of the reciprocal cell in Å−3 (shown in Fig. 4).
Given the amount of scatter in the plot, we performed loess regression
to create trend lines for each grid type.

The efficiency of a k-point grid is proportional to the irreducible
k-point density required to reach a given accuracy. Comparisons of effi-
ciencies were made by taking the ratio of the GR trend line to the SC and
MP trend lines of Fig. 5. At accuracies higher than 5meV/atom, GR grids
are more efficient (averaged over many structures) than MP and SC grids.
As an example, at a target accuracy of 1meV/atom, the GR grids are 20%

Fig. 3. Total energy convergence by grid type. Note that the size of the con-
vergence envelope gets bigger with higher k-point densities.

Fig. 4. Total energy convergence with respect to the irreducible k-point den-
sity. By looking at the irreducible k-point density the efficiency of the different
grids can be distinguished. Loess smoothing was also employed to determine
the average efficiency of the grids.

Fig. 5. Relative grid efficiency. Along the y-axis are the ratios of the MP and SC
efficiencies compared to the GR grid efficiency (black horizontal line at 100).
Total energy error (per atom) is plotted along the x-axis and decreases to the
left. MP and SC grids are generally less efficient than GR grids: at a target
accuracy of 1meV/atom, MP grids are 60%, and SC grids are 20%, less efficient.

1 For SC grids an independent k-point folding algorithm was used due to an
occasional bug in VASP 4.6’s folding algorithm. This bug has been fixed in
version 6 of VASP.
2 Calculations with MP grids with more than about 10,000 unreduced points

were not used. These calculations were problematic due to a number of pro-
blems, including memory constraints and errors during the k-point folding.
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more efficient than SC grids and 60% more efficient than MP grids.
It should be noted that in both Figs. 4 and 5 that MP grids appear to

perform worse at higher densities than at lower densities. Our statistical
analysis has indicated that this behavior is not statistically significant
and likely results from data scarcity for MP grids at high densities. We
believe that with sufficient data for MP grids at these densities the trend
line would continue to run roughly parallel to the GR line across all
densities. However, due to the computational expense of generating MP
grids at such densities we have been unable to demonstrate this.

5. Discussion

The erratic convergence of total energy for metals is attributed princi-
pally to the Fermi surface. Integrating over the occupied portions of the band
structure is equivalent to integrating a discontinuous band structure over the
Brillouin zone; the rapid, monotonic convergence observed for insulators
and semiconductors is lost because of the surface of discontinuities.

It is perhaps surprising how much the error varies at a given k-point
density. The implication is that, when generating databases of total energies,
relatively high k-point densities will be required for accurate comparisons.
For example, in Fig. 4, k-point densities as low as 10s of k-points/Å−3

achieve 10 3− eV/atom error for some structures, but to be certain that all
structures are converged to the same accuracy densities as high as 5000
k-points/Å−3 are necessary. Given the spread in the data we recommend
that a target density of 5000 k-points/Å−3 be used to reliably achieve ac-
curacies of 10 3− eV/atom for metals. However, should another accuracy be
desired, one can simply follow the top edge of the distribution of points in
Fig. 3 to the desired accuracy and read off the corresponding density.

For reference: a k-point density of 5000 k-points/Å−3 corresponds
to a linear k-point density of 0.058Å−1 (common input scheme for
CASTEP or newer versions of VASP, KSPACING in the INCAR file). This
is equivalent to the following Monkhorst-Pack grids or “k-point per
reciprocal atom” (KPPRA) settings for a few pure elements:

Element Cell divisions KPPRA

W 43 43 43× × 80,000
Cu 48 48 48× × 110,500
Al 43 43 43× × 80,000
K 26 26 26× × 17,500

Ti (2 atoms, hcp) 41 41 21× × 18,000

Likely these high numbers will be surprising to most DFT practi-
tioners—indeed, the current authors found them so—but this is the
message of Fig. 4 if one wants to be fully converged in all cases, and not
just on average. The large scatter in the errors for a given density im-
poses this large penalty on the practitioner who wishes to have fully
converged calculations. The need for high densities when using a reg-
ular grid for DFT calculations of metallic systems highlights the need for
development of adaptive techniques that can mitigate the deleterious
effects of a discontinuous integrand (i.e., the existence of a Fermi sur-
face.)

In our tests of GR grids, we also observed large spread in the energy
convergence of insulators, rather than the typical monotonic con-
vergence observed for MP grids. This happens because GR grids are not
restricted to a single Bravais lattice type. Grids of different lattice types
will have different packing fractions and thus converge at different
rates. Fig. 6 shows the energy convergence rate of primitive silicon for
three Bravais lattice types; the convergence is monotonic for each type.
As expected, body-centered cubic grids have the fastest convergence.
This is because bcc lattices have the highest packing fraction when
Fourier transformed (becoming fcc). If grids of multiple Bravais lattice
types are used, as happens for GR grids obtained by querying WMM’s
k-point server, spread in the energy convergence is introduced. To
demonstrate that erratic convergence for metals is not merely due to
mixing grids of multiple Bravais lattice types, we include Fig. 7. The
figure also demonstrates that the grid type, i.e., bcc, fcc, or sc, has no
effect on the convergence.

6. Conclusion

GR grids are not intrinsically better than SC or MP grids—that is,
they do not converge more rapidly as a function of k-point density.
They are more efficient because they typically have better symmetry
reduction than MP or SC grids, reducing the computational effort re-
quired for GR grids. Also, with GR grids one may increase the k-point
density in smaller increments because the set of possible grids (and thus
k-point densities) is larger than the sets of possible grids for SC and MP.

Our tests over more than 7000 structures of varying cell sizes,
shapes, and k-point densities demonstrate how erratic k-point con-
vergence is for metals, and how wide the variance can be at a given
k-point density, and how this variance grows with increasing k-point
densities. These facts should be considered when generating computa-
tional materials databases since greater errors may result from not

Fig. 6. Convergence for silicon by Bravais lattice type of the k-point grid. The
energy convergence remains smooth for GR grids as long as the grid is of a
single Bravais lattice type. Otherwise, some spread in the energy convergence,
similar to that observed for metals, is introduced.

Fig. 7. (Color online) Convergence of aluminum by Bravais lattice type of the
k-point grid. Jaggedness and spread in the energy convergence remains for GR
grids even after separating the grids by Bravais lattice type.
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using enough k-points for a target accuracy. Using GR grids for non-
metals may result in unexpected scatter; when smooth convergence is
desired, we advise that GR grids of a single Bravais lattice type be
utilized.
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Appendix A. Simultaneously commensurate grid construction

A simultaneously commensurate (SC) grid is useful for calculating formation enthalpies when the target structure is a derivative superstructure of a
parent structure. (Obviously this is a convenient method when computing enthalpies for cluster expansion studies because the training structures are
superstructures of the parent.) When SC grids are used, the absolute convergence with respect to k-point density is not faster than for other grids but
the relative convergence can be faster because of error cancellation—both the parent structure and the derivative superstructure have exactly the same
grid. The idea is illustrated in Fig. 8. In panel (a) we divide up the reciprocal unit cell of the parent lattice (red3 parallelogram) into a uniform grid of
k-points (blue points). We then place the same grid from the parent cell on the supercell, as in panel (b). If we have chosen a SC grid, it is clearly
periodic for the supercell as well as the parent. Only those grids that are commensurate with both the parent cell and supercell can be used to
integrate both cells. Fig. 9 shows an example of an incommensurate grid. When the grid of the parent cell is placed over the reciprocal cell of the
supercell, the grid is not periodic—translations of the supercell (dotted lines) are sampled differently by the grid.

For our crystals that have cubic parent cells, an initial set of commensurate bcc, fcc, and sc grids were generated. A subset of those grids that were
commensurate with each supercell were used to do calculations of the various crystal structures. For hexagonal crystals, a similar procedure was
followed except only hexagonal grids were used.

Fig. 8. (Color online) An example of a SC grid. Panel a): the selected grid (blue points) is commensurate with the reciprocal cell (red parallelogram) of the parent cell.
Panel b): it can be seen that the grid is also commensurate with the reciprocal unit cell of the supercell (smaller parallelogram). (Dotted lines indicate translations of
the supercell.) The k-point grid is the same in each translation of the supercell.

3 For interpretation of color in Fig. 8, the reader is referred to the web version of this article.
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.commatsci.2018.06.031.
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