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A B S T R A C T

We propose an approach to materials prediction that uses a machine-learning interatomic potential to ap-
proximate quantum-mechanical energies and an active learning algorithm for the automatic selection of an
optimal training dataset. Our approach significantly reduces the amount of density functional theory (DFT)
calculations needed, resorting to DFT only to produce the training data, while structural optimization is per-
formed using the interatomic potentials. Our approach is not limited to one (or a small number of) lattice types
(as is the case for cluster expansion, for example) and can predict structures with lattice types not present in the
training dataset. We demonstrate the effectiveness of our algorithm by predicting the convex hull for the fol-
lowing three systems: Cu-Pd, Co-Nb-V, and Al-Ni-Ti. Our method is three to four orders of magnitude faster than
conventional high-throughput DFT calculations and explores a wider range of materials space. In all three
systems, we found unreported stable structures compared to the AFLOW database. Because our method is much
cheaper and explores much more of materials space than high-throughput methods or cluster expansion, and
because our interatomic potentials have a systematically improvable accuracy compared to empirical potentials
such as embedded atom model, it will have a significant impact in the discovery of new alloy phases, particularly
those with three or more components.

1. Introduction

Advances in computer power, improvements in first-principles
methods, and the generation of large materials databases like AFLO-
WLIB [1], OQMD [2], CMR [3], NOMAD [4], and Materials Project [5]
have enabled modern data analysis tools to be applied in the field of
materials discovery [6–8]. There have been growing efforts in compu-
tational search for materials with superior properties, including me-
tallic alloys [9–11], semiconductor materials [12], and magnetic ma-
terials [13]. In this work we consider the problem of predicting stable
phases in multicomponent alloys. A typical prediction algorithm con-
sists of sampling structures across the configurational space and eval-
uating their energies. The sampling is done by searching through
structures that are either selected from some carefully assembled pool
of possible structures, often called crystal prototypes [14], or are gen-
erated by some sampling algorithm, see, e.g., Refs. [15,16].

The evaluation of the energy of the structures in the pool is often
done with density functional theory (DFT). Even despite its favorable
accuracy/efficiency trade-off as compared to other quantum–mecha-
nical algorithms, the DFT calculations remain the bottleneck in

materials prediction workflows, making an exhaustive search im-
practical. Machine learning (ML) for materials prediction has the po-
tential to dramatically reduce the number of quantum-mechanical
calculations performed and thus reduce the computational expense of
predicting new materials via computation. The reduction of the com-
putational time is achieved by constructing a surrogate model that
“interpolates” the quantum-mechanical training data and makes sub-
sequent energy evaluations much faster (by orders of magnitude). This
is similar in spirit to the cluster expansion method which has been
broadly used in different materials discovery applications [17–19,12].
Cluster expansion is quite successful when the stable structures are
derivatives of a particular structure (fcc, bcc, etc.) but is not useful
when this is not the case. Its accuracy also converges slowly when
atomic size mismatch is not negligible [20]. Additionally, more classical
machine-learning algorithms such as decision trees [21], support vector
machines [22], and other ML algorithms [23,24] have been tried.
Surrogate models such as the cluster expansion and standard machine
learning approaches do not have the broad applicability and excep-
tional accuracy of the moment tensor potentials-based [25] approach
we demonstrate here.
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The two important features of our approach are a completely gen-
eral form for the interatomic potentials and an active learning algo-
rithm for generating and refining the training set. In this work we ex-
tend the approach [26] for predicting the structure of a single-
component material. In our approach, a ML model reproduces DFT for
off-equilibrium structures that are not restricted to any lattice. Fur-
thermore, the model learns the DFT interaction actively (on-the-fly)
while equilibrating the candidate structures, completely automating the
construction of the training set. Thus, structural optimization of the
training structures can be performed via the interatomic potentials,
rather than via DFT, further accelerating the construction of the
training set.

Our method is based on moment tensor potentials (MTPs [25]) and
the active learning algorithm [27]. Namely, we solve the following
problem: given a set of elements, find the most stable structures (in the
sense of lying on the convex hull of formation enthalpies) consisting of
these elements, each characterized by composition, unit cell geometry
and atomic positions within the unit cell. In this work we extend the
interatomic potential [25] and active learning algorithm [27] to handle
atomistic configurations with multiple types of atoms, similarly to the
approach used in cheminformatics [28]. The differences between the
algorithms from Ref. [28] and this work include that (1) we need de-
rivatives of the energy, whereas in Ref. [28] we needed only the energy
(or other predicted properties); and (2) that in Ref. [28] we were
concerned with the selection from a finite set of predefined structures,
whereas in this work we need to solve the problem predicting the en-
ergy with a fitted potential and assembling the training set used for the
fitting at the same time (in other words, exploring the potential energy
landscape and constructing the training set at the same time).

The idea of applying neural networks, as a broad class of machine-
learning algorithms, to constructing interatomic potentials was pio-
neered in Ref. [29]. Application of Gaussian process regression, another
class of machine-learning algorithms, was then proposed in Ref. [30].
The promising results obtained in these works have motivated many
research groups to pursue this research direction [31–50,25,51].
However, the application of such algorithms to the problem of materials
prediction has proven difficult since following such a methodology
requires one to collect all the representative structures in the training
set which is as hard as predicting materials structure itself. In our view,
it is the active learning [27,26,33,52,53] that paves the way for ma-
chine-learning interatomic potentials to accelerate computational ma-
terials discovery.

This paper is organized as follows: in Section 2 we introduce the
algorithms we use, including the moment tensor potentials (Section
2.1), active learning (Section 2.2), and the “relaxation while learning
on-the-fly” algorithm (Section 2.3). In Section 3 we test the proposed
algorithm on predicting the stable structures of the Cu-Pd, Co-Nb-V,
and Al-Ni-Ti systems and discuss the performance of our algorithm. In
particular, we compare our results to those obtained by high-
throughput DFT calculations as reported in the AFLOW database
[10,1]. In all three systems we have discovered new structures below
the reported convex hull of ground-state structures. Finally, in Section 4
we make concluding remarks.

2. Methodology

2.1. Machine-learning potentials

We use the moment tensor potentials (MTPs) for approximating a
quantum-mechanical energy. The potential is parametrized by a set of
parameters that are found from minimizing the loss functional ex-
pressing that the predicted energy E is close to the reference quantum-
mechanical energy Eqm:

=L E x E x( ) ( ( , ) ( )) min,
j

j j( ) qm ( ) 2

(1)

where x j( ) are the configurations in the training set and E x( )jqm ( ) are
their reference energies.

Our model is local, which we enforce by partitioning the energy, E,
into the contributions, V, of individual atomic neighborhoods. To define
a neighborhood of the ith atom, we let rij be the position of jth atom
relative to the ith atom (thus, rij is a vectorial quantity) and zj be the
type of the jth atom. Then ni is the collection of rij and zj, and

n=E x V( ) ( )i i . The locality of the model is expressed by the re-
quirement that V does not depend on atoms that are farther from i than
some cutoff distance Rcut, which is usually around 5 Å. An illustration of
an atomic neighborhood is sketched in Fig. 1. Mathematically, each
atom in the neighborhood introduces four degrees of freedom, on which
ni depends: these are three coordinates in Euclidean space, and a dis-
crete variable representing the chemical type. Typically, neighborhoods
include a few dozen atoms, which means that the function nV ( )i de-
pends on the order of hundred scalar variables. To somewhat reduce the
dimensionality, we embed all physical symmetries into nV ( ) so they
will not have to be learned by the model. These symmetries arise from
the isotropy and translational symmetry of the physical space, and from
the fact that the interaction between atoms does not depend on their
ordering (see Fig. 2).

As in the work [25] devoted to the single-component moment tensor
potentials, nV ( ) is linearly expanded through a set of basis functions B :

n n=V B( ) ( ).
(2)

The basis functions, in turn, depend on the set of moment tensor
descriptors

n = …r r rM f z z( ) , , ,µ i
j

µ ij i j ij ij,

times (3)

where the index j enumerates all the atoms in the neighborhood ni. The
functions rf z z( , , )µ ij i j depend only on the interatomic distances and
atomic types, therefore we call them radial functions. The terms

…r rij ij contain the angular information about the neighborhood ni
and are tensors of rank . We next explain how to construct the basis
functions from the moment tensor descriptors, following which we
present a simple illustration of the structure of the descriptors and basis
functions.

The functions nB ( )i enumerate all possible contractions of any
number of nM ( )µ i, yielding a scalar. Note that nM ( )µ i, are invariant, by
construction, with respect to translations of the system and permuta-
tions of equivalent atoms. Their scalar contractions are invariant with
respect to rotations of the neighborhood. Thus the resulting function

Fig. 1. Partitioning scheme: energy E is composed from contributions Vi of in-
dividual neighborhoods ni. The neighborhood ni of the ith atom is described by
the relative position of neighboring atoms, rij, and the types of atoms zj (I or II
in this illustration).
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nV ( ) also has these symmetries. Although all the descriptors nM ( )µ i, are
composed of two-body terms depending only on rij, their contractions

nB ( )i can depend on many-body terms of higher order.
For the purpose of illustration, assume, for the moment, that the

vectors rij are two-dimensional and that we can express them in polar
coordinates ( , ) centered at the ith atom. Let us look closer at the term

… =r r r:ij ij . rij
0 is a scalar with no angular information, while

= =r r r (cos , sin )ij ij ij ij ij
1 does contain angular information. A vec-

torial contraction is simply a dot product: =r r r r· cos( )ij ik ij ik ij ik —in
this way we introduce angular terms into the potential. An arbitrary
function of angle can be expanded into a sum of powers of cosine. Such
higher-order terms are contributed to the potential by higher-rank
tensors, e.g.,

= =r r r r
cos sin cos

sin cos sin
.ij ij ij ij

ij ij ij

ij ij ij

2
2 2

2

The contractions of two matrices are given by the Frobenius product

=r r r r: cos ( ).ij ik ij ik ij ik
2 2 2 2 2

A more complicated expression can be constructed with a matrix
and two vectors:

=r r r r r r( )· cos( )cos( ).ij ik i ij ik i ij ik ij i
2 2

Terms of this form are rotationally invariant. Permutation in-
variance is achieved by summing those terms over all atoms in the
neighborhood weighted by the radial functions.

As an illustration, assume that we have two radial functions,

=f z z
R

, , exp
2

,µ i j
µ

2

2

=µ 1, 2, where has the meaning of distance to the central, ith atom.
In the sum (3) they “extract” two shells of atoms, around the distances
R1 and R2 from the ith atom, smeared over the width of . We did not,
but could assume the dependence of these functions on the types of
atoms zi and zj—this would discriminate the importance of these atom
types to these two shells. Thus, M1,0 and M2,0 are the atom count in these
two shells and both could serve as basis functions. Mi,1 are vectorial
quantities indicating eccentricity of these shells: if =M 0i,1 then the ith
shell is symmetric (to the first order) while M 0i,1 indicate that there

are “more atoms” in the direction Mi,1 than in the opposite direction.
As vectorial quantities, Mi,1 are not valid basis functions, however,

the valid ones are M M·i i,1 ,1 indicating the magnitude of eccentricity and
M M·i i,1 ,2 indicating how these two eccentricities are aligned with re-
spect to each other. One can make many more basis functions from
these quantities, e.g., M M M M M M M( · ), ( · )( · )i i i i i i i,0 ,1 ,1 ,1 ,1 ,1 ,2 , etc. One can
then continue by analogy: Mi,2 are the second moments of inertia of
these shells indicating the degree to which these shells are “squeezed”
in the respective directions, forming the basis functions
M M M M M M M M M: , ( )· , ( )·i j i j k i j k,2 ,2 ,2 ,1 ,1 ,2 ,2 ,1 ,1, etc. We remark that this
way of enforcing symmetries in the potential is related to the ideas from
Refs. [54,55].

For the purpose of choosing which (out of the infinite number of)
basis functions to include in the interatomic potential, we define the
degree-like measure, level, of Mµ, by = +M µlev 2µ, and the level of
B obtained by contracting …M M, ,µ µ, ,1 1 2 2 , as

= + + + + …B µ µlev (2 ) (2 )1 1 2 2 . Thus, to define an MTP we choose
some levmax and include in (2) each B with Blev levmax. Thus, by
increasing levmax we increase the number of parameters in the potential,
including the contributions of three-body, four-body, etc., terms. In this
sense, nV ( ) has a systematically improvable functional form.

The radial functions rf z z( , , )µ ij i j (cf. (3)) have the form:

=f z z c Q, , ( ), whereµ i j
k

µ z z
k k
, ,

( ) ( )
i j

(4)

Q T R( ) ( )( ) .k
k

( )
cut

2

Here T ( )k are the Chebyshev polynomials on the interval R R[ , ]min cut .
The term R( )cut

2 was introduced to ensure smoothness with respect to
the atoms leaving and entering the cut-off sphere. Taking into account
that in real systems atoms never stay too close to each other, we can
always choose some reasonable value for Rmin.

The difference from the single-component MTPs [25] is that now
the functions f z z( , , )µ i j depend on the types of the central and the
neighboring atoms. As follows from (4) a number of parameters cµ z z

k
, ,

( )
i j

exist for each pair of species and each µ. Note that the number of these
parameters is proportional to n2, where n is the number of species,
while number of parameters i from (2) does not depend on the
number of species. Thus, the total number of model parameters

= c{ },i µ z z
k
, ,

( )
i j to be found in the minimization procedure (1)

grows less than quadratically with the number of species, despite ac-
counting for many-body interactions in nV ( ). It was proven [25] that
the descriptors of the form (3) provide a complete description of an
atomic neighborhood, in the sense that any function of atomic
neighborhood with the same symmetries as nV ( ) can be approximated
as a polynomial of these descriptors with an arbitrary accuracy. The
proof [25] holds for a single-component case, but can be easily ex-
tended to a multicomponent case.

2.2. Active learning

The accuracy of a machine-learning potential depends as much on a
good functional form (an efficient representation, in ML parlance), as
on the quality of the training set. Roughly speaking, a good training set
should include all the representative structures, so that the potential
does not have to “extrapolate” while searching for the stable phases. In
cluster expansion-like approaches in which the energies of relaxed
structures are predicted based on a representation that uses unrelaxed
structure geometries, extrapolation results in higher prediction errors
[20]. However, in our approach structural relaxation is treated ex-
plicitly, and we accelerate the relaxation by using a machine-learning
potential instead of DFT. Because of the added flexibility of the MTP (as
compared to cluster expansion), avoiding extrapolation is even more
important—it is crucial to the reliability of the algorithm—as highly

Fig. 2. For the purpose of fitting the interatomic interaction energy E, the
neighborhood ni is described by the moment tensors Mµ, exhibiting all the
physical symmetries that E has.
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unphysical structures can arise during the relaxation if the extropola-
tion is severe.

We avoid extrapolation by using active learning. The active learning
algorithm developed in this work is a generalization of the algorithm
proposed for linearly parametrized models [27]. It is based on a D-
optimality criterion as we explain below. As the model in this paper has
a nonlinear dependence on its parameters, we apply a generalization of
the D-optimality criterion to the nonlinear case.

To that end, we interpret fitting as solving the following over-
determined system of equations with respect to :

=E x E x( , ) ( ).i i( ) qm ( )

We assume that we have some initial guess, , for the optimal values
of parameters. Then if we linearize these equations around then the
left-hand side will be the following tall (Jacobi) matrix

B =
…

…

x x

x x

( , ) ( , )

( , ) ( , )
,

E E

E n E n

(1) (1)

( ) ( )

m

m

1

1

where each row corresponds to a particular structure from the training
set.

The generalized D-optimality criterion hence states that the best
training set of m configurations corresponds to a square ×m m sub-
matrix A of the matrix B of maximal volume (i.e., with maximal value
of Adet( ) ). In practice, it is sufficient, for a given configuration x to
compute its extrapolation grade x( ) defined as the maximal factor by
which Adet( ) can grow if x is added to the training set. We do it by
using the so-called maxvol algorithm [56], according to which

=x c( ) max , where
j n

j
1

A A= … =c F x F x b( , ) ( , ) : .
n1

1 1

Thus, we add x to the training set if x( ) tsh, where 1tsh is a
tunable threshold parameter that can control how much extrapolation
is allowed.

The (generalized) D-optimality criterion serves to detect structures
on which the potential extrapolates. Hence, training on such structures
prevents extrapolation and thus ensures that all the structures occurring
during relaxation are interpolative with respect to the structures in the
training set. In this work we use the active learning algorithm to con-
struct the training set by selecting some of the configurations arising
during relaxation. It also can be used to compose an optimal training set
from configurations belonging to some pre-defined set [28].

2.3. Algorithm

Next we describe the algorithm for constructing the convex hull.

Input The input to the algorithm is:
1. A set of candidate structures among which we expect to find

the groundstate structures.(We can afford to select a much
broader and more diverse set of structures as compared to the
approaches based solely on DFT.)

2. A functional form of MTP, =E E x( , ).
We initialize randomly and let the training set be empty.

3. A quantum-mechanical model E x( )qm .
In this work we used DFT as implemented in VASP 5.4.1.

Fig. 3. Relaxation with active learning. If MTP encounters an extrapolative configuration ( tsh), the configuration is added to the preselected set for further
selection. In the case of significant extrapolation ( tsh) the relaxation is terminated. For configurations with < tsh, the MTP provides energies, forces and
stresses. If no configuration with tsh is encountered, the relaxation stops at some equilibrium configuration.
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4. Two thresholds tsh and tsh, such that > > 1tsh tsh .
If the extrapolation grade x( ) is greater than 1, the algo-
rithm makes two decisions: to add x to the training set if

>x( ) tsh and to terminate the relaxation if >x( ) tsh
(assuming in the latter case that we cannot make reliable
predictions of energy, forces, and stresses for x ), as ex-
plained below.

Step 1 For each candidate structure we perform the structure relaxa-
tion with the current MTP (defined by the current values of ).
There can be two outcomes of the relaxation: (1) the relaxation
completed successfully and we get an equilibrium structure as a
result, (2) the relaxation was not successful because we en-
countered a structure on which the MTP attempted to extra-
polate. More precisely, the following scenarios can emerge:

a. The relaxation successfully converges to an equilibrium
configuration and on each configuration from the relaxation
trajectory (see Fig. 5) the MTP does not significantly extra-
polate, i.e., the extrapolation grade of each intermediate
configuration is less than tsh. During the relaxation there

could be, however, configuration with extrapolation grade
exceeding tsh—in this case we add such a configuration to the
preselected set (see Fig. 3 and Section 2).
b. At some step of the relaxation we obtain a configuration
with the extrapolation grade exceeding tsh. This means that
MTP cannot provide a reasonable prediction as it extrapolates
significantly on this configuration and needs to be retrained
with more ab initio data (see Fig. 4). We then terminate the
relaxation. The last and all the previous configurations with
the grade exceeding tsh are added to the preselected set.

Step 2 Out of the preselected set from the step 1b, we select a smaller
number of configurations that will be added to the training set.
The preselected set can be very large and contain hundreds of
thousands configurations (note that during the first iteration of the
algorithm all the relaxations will be terminated according to the
scenario (b), as the training set is empty and the MTP extrapolates
on every configuration.) Therefore we use our active learning al-
gorithm to select up to few hundred most representative config-
urations, according to the D-optimality criterion from Section 2.2.
Thus, we extend the training domain of the MTP as much as
possible while keeping the amount of ab initio calculations rela-
tively small. After the calculation of ab initio energies, forces and
stresses of the selected configurations are added to the training set.

Step 3 Fit the MTP on the updated training set. As the size of the
training set grows on each iteration of the algorithm, this step
will take more and more time during each subsequent iteration,
but still this time is a small fraction of the time spent on ab initio
calculations.

Step 4 Repeat the steps 1–3, unless all the relaxations have successfully
converged to the respective equilibrium configurations.

As we keep refitting the MTP during the relaxation on a dynamically
updated training set, we call this algorithm as “relaxation while
learning on-the-fly”.

3. Results and discussion

3.1. CuPd system

To test the applicability of our algorithm (Section 2.3) to the pre-
diction of stable alloy structures we first used it to construct the Cu-Pd

Fig. 5. Graphical illustration of the relaxation process. By “relaxation trajec-
tory” we mean a sequential list of structures that occur during the relaxation
which have similar but distinct atomic displacements and lattice parameters,
and which typically have decreasing energy.

Fig. 4. If an MTP encounters some extrapolative configuration during relaxa-
tion, as shown in (a), the relaxation is terminated and restarted after retraining
the MTP on this configuration, as shown in (b).
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convex hull. We chose the Cu-Pd system because the structure of both
pure Cu and Pd is fcc, while the stable equimolar CuPd structure is a bcc
derivative structure. This system is a good test of whether or not our
MTP-based model is able to simultaneously handle multiple lattice
types, a challenging case for cluster expansion.

Using the algorithm of Ref. [15], we prepared 40,000 unrelaxed
configurations with the bcc lattice and close-packed latticess (fcc and
hcp), each configuration with 12 or less atoms in the unit cell and
different concentrations of Cu and Pd. These were the candidate
structures served as the input to our relaxation while learning-on-the-
fly algorithm. We then equilibrated them and constructed a convex hull
based on their relaxed energies. As follows from the scheme from
Section 2.3, the training set increases on each iteration. The final
training set was formed by 523 configurations. We call the training set
“final” since an MTP trained on this set is able to relax all the candidate
structures without exceeding threshold for the extrapolation grade. The
root-mean-square error (RMSE) of energy per atom ( ) measured on
this training set was equal to 2.3 meV/atom. We used =lev 16max (refer
to Section 2.1) to construct the MTP with about 200 parameters .

Fig. 6 shows the convex hulls constructed by the MTP and by high-
throughput DFT calculations as reported in AFLOW. To make a direct
comparison possible, both convex hulls were post-relaxed with DFT
using the same settings (such as pseudopotentials, k-point mesh, etc.).
As a result, we have found a structure with 16.6% concentration of Pd
that is not presented in the AFLOW library and has energy per atom
0.5 meV below the AFLOW convex hull level. Though such a shallow
ground state is typically not significant beyond academic interest, Cu-
rich ground states are believed to have an effect on the experimental
Cu-Pd phase diagram and have been discussed in Refs. [57,58] as a way
of explaining the peculiar “off-stoichiometry” behavior on the Cu-rich
side of the phase diagram.

It is illustrative to show the convex hull predicted by MTP and not
post-relaxed with DFT. In Fig. 7, only structures within the 4 (10 meV/
atom) interval from the MTP convex hull are shown. Visually, the MTP
convex hull looks slightly different due to the approximation errors of

MTP leading to different relative levels of the structures on the “energy
per atom” axis. Still, MTP reproduced the stable phases present in
AFLOW library.

During the entire procedure, most of the computational expense
(about 90%) was DFT calculations. In total, we did 523 single-point
DFT calculations. If we relaxed all the 40,000 configurations using DFT,
it would have taken about 10,000 times more computing time.

3.2. Co-Nb-V

We next test our algorithm on constructing a convex hull for the
ternary Co-Nb-V system in the region where the concentration of Co is
50% or more. The number of initial candidates was about 27,000 and
they were bcc-like and close-packed (fcc, hcp, etc.) configurations with
8 or less atoms in the unit cell and different concentrations of Co, Nb
and V.

The MTP was trained on-the-fly and the final training set consisted
of 383 configurations. The resulting convex hull is shown in Fig. 8.
Remarkably, we have discovered a new structure with composition
Co3Nb2V. It has a formation energy of 50 meV/atom below the AFLOW
convex hull. Its unit cell and a layer-by-layer plot are shown in Fig. 9.
We remark that geometrically this structure is different from any of
those in the initial pool—e.g., the Nb atoms have 16 nearest neighbors
with distances between 2.76 and 2.98 Å. It would hence be impossible
to accurately treat such a configuration for both an on-lattice model,

Fig. 6. Comparison of the convex hulls (a) as obtained from AFLOW and re-calculated with DFT, and (b) as found by MTP and re-calculated with DFT. We have
discovered a structure at 16.6% Pd which is 0.5 meV lower than AFLOW’s convex hull.

Fig. 7. Convex hull constructed by MTP and structures with formation energy
within 10 meV/atom above the convex hull.

Fig. 8. Convex hull of the Co-Nb-V system constructed by MTP in the Co-rich
region.
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Fig. 9. The Co3Nb2V discovered by MTP. The unit cell is shown in (a), while layer-by-layer plots in vertical and side projections are shown in (b)–(g). Co∗ show were
the next (periodically extended) layer of Co atoms are positioned. The structure was found, although no similar crystal prototypes were used.
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such as cluster expansion, and an off-lattice model unless such a crystal
prototype was known and explicitly added to the training set. This
demonstrates the capabilities of our approach, combining an accurate
off-lattice model and active learning.

3.3. Al-Ni-Ti

Finally, we applied our algorithm to the Al-Ni-Ti system. This
system is well-studied and has many known ternary structures, some of
which have over 20 atoms in the unit cell. We hence chose a set of
candidate structures consisting of two parts: the first part has 1463
structures which were used in AFLOW as crystal prototypes.

The second part was generated by the algorithm from Ref. [15] and
contains 375,000 binary and ternary structures enumerating all pos-
sible unit cells with different symmetries (bcc, fcc and hcp) and dif-
ferent number of atoms; we chose unit cells containing up to 12 atoms.

Including crystal structure prototypes adds extra difficulties: the
structures may contain short interatomic distances (if, e.g., the original
structure from which the prototype was derived had carbon-metal
bonds which are shorter than typical metal-metal distances) and also
smaller volume than that of the typical Al-Ni-Ti structures. Both of
these features of the prototypes might result in unphysical structures
with large stresses and forces which, in turn, lead to large MTP pre-
diction errors. To make the unit cells of the candidate structures less
deformed, we adjusted their volumes enforcing the relation:

= + +v n n n n v n v n v( , , ) ,Al Ni Ti Al Al Ni Ni Ti Ti (5)

where v n n n( , , )Al Ni Ti is the volume per atom assigned to the unit cell
with concentrations of Al, Ni, Ti equal to n n n, ,Al Ni Ti respectively and
v v v, ,Al Ni Ti are the volumes per atom for equilibrium fcc-Al, fcc-Ni, hcp-
Ti structures respectively. Resizing the unit cells in this way provides an
initial guess for their volumes (a kind of “Vegard’s law” for different
lattice types.)

To circumvent the large prediction errors that might occur for
prototype structures with bond lengths and neighborhoods atypical of
alloys, we performed a two-step relaxation as explained below. We used

=lev 20max (see Section 2.1) to construct the MTP with about 650
parameters. This makes the potential more accurate, but requires more
data for training, than with =lev 16max . First, we did the same proce-
dure as for the Cu-Pd and Co-Nb-V systems, which provided us with the
training set of 2393 configurations with ab initio energies, forces and
stresses. The MTP trained on this set has mean absolute error (MAE)
and RMSE of energy per atom of 18 meV/atom and 27 meV/atom, re-
spectively.

We next relaxed the 377,000 configurations and constructed a
convex hull. Next, we picked all the configurations whose formation
energy per atom is lower than 4 ( 100 meV) from the convex hull
level. This left us with 62,000 configurations.

Second, we repeated the procedure of relaxing the 62,000 config-
urations on-the-fly from scratch, starting from an empty training set.
During this process a new training set with 976 structures was formed
by the active learning algorithm. The MAE and RMSE on this training
set was 7 meV/atom and 9 meV/atom, respectively. This way we con-
structed a convex hull based on more accurate formation energies, than
would be possible after the first step.

To perform a comparison with the AFLOW convex hull, from the
62,000 relaxed configurations we eliminated all the configurations with
formation energy per atom higher than 4 from the convex hull level,
where now = 9 meV/atom. This left us with about 7000 configura-
tions, which were subsequently relaxed with DFT. After this, we con-
structed a final convex hull using the DFT formation energies. It has all
the structures, present in AFLOW, and three new structures discovered
by MTP (see Fig. 10). Their chemical formulas are given in Table 1
together with their position below the AFLOW convex hull level. In-
terestingly, all the structures are Ni-rich which makes their discovery
relevant to the application of Ni-based alloys.

Taking into account that after the first step we have obtained an
MTP capable of relaxing all the 377,000 configurations, we call it the
“robust” potential. After the second step we have obtained an MTP
which is trained on (and thus able to relax) the low-energy near-equi-
librium structures only. We refer to this MTP as the “accurate” poten-
tial. We attribute the difference in accuracies of the robust and accurate
potentials to the fact that, at the second step, the trajectories of re-
laxations started from near-equilibrium structures (within the accuracy
of the robust potential), see an illustration in Fig. 11. This reduces the
region in the configurational space in which the MTP is fitted, thus
improving the accuracy in comparison to the first step.

4. Conclusions

We have developed an algorithm for constructing a convex hull of
stable alloy structures based on the moment tensor potentials (MTPs) to
approximate ab initio energies, forces and stresses of atomistic config-
urations. This way the calculations for atomistic systems can be done
much faster than with DFT, while the accuracy is comparable to that of
DFT. The active-learning algorithm forms a training set automatically,
removing the need for its manual design—the most tedious part of ap-
plication of ML to atomistic modeling. We have verified the applicability
of our algorithm by constructing the convex hulls for the Cu-Pd, Co-Nb-V
and Al-Ni-Ti metallic alloy systems and comparing them to the convex
hulls from AFLOW library. For all the systems we have discovered new
stable structures, which are not listed in the AFLOW library. We attribute

Fig. 10. Al-Ni-Ti convex hull constructed by MTP and compared to the one
from AFLOW. The MTP convex hull contains all the structures from AFLOW
plus three newly discovered ones.

Table 1
New Al-Ni-Ti structures found in this study. The “level below the convex
hull” was computed using DFT.

Formula Position below the convex hull (meV)

Al4Ni8 −7.38
Al1Ni11 −1.18
Al1Ni9Ti2 −0.34
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this to the large amount of candidate structures (40,000 for Cu-Pd,
27,000 for Co-Nb-V, 377,000 for Al-Ni-Ti) we explored, which would be
impossible to equilibrate using DFT. Instead, we performed relaxations
using fast MTP calculations, referring to DFT only for the training data
generation. In the cases covered by this paper, the amount of single-point
DFT calculations was about 1% of the total amount of relaxed config-
urations. In comparison to the high-throughput DFT calculations, the
speedup is three to four orders of magnitude.

5. Data availability

The data required to reproduce our results are available to down-
load from http://gitlab.skoltech.ru/kgubaev/Data_for_MTP_with_
active_learning.
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