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A B S T R A C T

Solute segregation in materials with grain boundaries (GBs) has emerged as a popular method to thermody-
namically stabilize nanocrystalline structures. However, the impact of varied GB crystallographic character on
solute segregation has never been thoroughly examined. This work examines Co solute segregation in a dataset
of 7272 Al bicrystal GBs that span the 5D space of GB crystallographic character. Considerable attention is
paid to verification of the calculations in the diverse and large set of GBs. In addition, the results of this work
are favorably validated against similar bicrystal and polycrystal simulations. As with other work, we show
that Co atoms exhibit strong segregation to sites in Al GBs and that segregation correlates strongly with GB
energy and GB excess volume. Segregation varies smoothly in the 5D crystallographic space but has a complex
landscape without an obvious functional form.
1. Introduction

Solute atoms in polycrystalline materials with grain boundaries
(GBs) may stay in the bulk, diffuse to the surface, or segregate to
the GB, among other behaviors such as forming precipitates. When
solute atoms segregate, they often remain in the GB network due
to both kinetic mechanisms and thermodynamic stabilization. Some
examples of kinetic mechanisms are solute drag that slows GB mobil-
ity [1] and solute pinning that prevents GB mobility under external
driving forces [2]. Thermodynamic stabilization involves lowering the
Gibbs free energy of a GB interface by the presence of the solute
atom [3,4], and is described in a theoretical framework developed
by Weissmüller [5,6]. Thermodynamic stabilization can be utilized to
engineer materials with greater hardness than a pure material even at
elevated temperatures (e.g., in [3,7–9]) due to the Hall-Petch effect
that causes greater hardness with smaller grain sizes [10,11]. A recent
review of thermodynamic stabilization is given in [12].

While a variety of models for segregation energy exist [13], simple
effective segregation energy models of solute segregation [14] were
derived from experimentally determined values and are still often
used to predict solute concentration at GBs and in larger mesoscale
models [15–20]. However, such models violate the third law of ther-
modynamics [21], do not account for the effects of GB character on the
system, and are insufficient to describe experimental behavior [22–24],
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in particular of strong segregation to specific atom sites (e.g., in the
Co–Al–W system [25]).

Recently, models that are informed by simulated data have been
developed to address such issues. GB solute segregation has been
examined in the dilute limit in atomistic studies utilizing polycrystals
[21,26–30] and bicrystals in small regions of the 5D GB space
[31–36], as well as in first-principles [36–41] and experimental studies
[42,43]. Some studies improve on the segregation energy calculations
by including entropic and other effects in the atomistic simulations
[30,44]. Others move beyond the dilute limit by considering solute-
solute interactions [45], or multiple-solute interactions [46]. From
these data, segregation models are often created using machine learning
techniques [27,31,32], specifically to predict segregation energy of
specific atom sites from their local environments. Recent reviews of
computational modeling of solute segregation are given in [47,48].
Here, we highlight two recent and notable efforts to create more ac-
curate segregation energy models based on segregation energy spectra,
which permits enforcement of the third law of thermodynamics [21].

Huber et al. created a small dataset of densely sampled 𝛴5 coin-
cident site lattice (CSL) Al bicrystal GBs and calculated segregation
energy spectra for 6 different solute types to inform machine learning
models for solute segregation at the atomic level [31]. They found that
a thorough sampling of the 5D space of GB crystallographic character
was necessary for the creation of a segregation energy spectrum that
https://doi.org/10.1016/j.actamat.2024.120448
Received 17 May 2024; Received in revised form 28 September 2024; Accepted 1 O
vailable online 3 October 2024 
359-6454/© 2024 Acta Materialia Inc. Published by Elsevier Ltd. All rights are
echnologies. 
ctober 2024

 reserved, including those for text and data mining, AI training, and similar 

https://www.elsevier.com/locate/actamat
https://www.elsevier.com/locate/actamat
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/4ykjz4ngwt
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
https://doi.org/10.17632/rf3bt5f4hd
mailto:eric.homer@byu.edu
https://doi.org/10.1016/j.actamat.2024.120448
https://doi.org/10.1016/j.actamat.2024.120448


L.H. Serafin et al.

t
G
s
C
w
o
m
t
o
d
a
t
a
s
c

2

2

d
i
l
C

𝐸

e

t
l

t
l

o
c

Acta Materialia 283 (2025) 120448 
informs a model more accurate than the rudimentary effective seg-
regation energy model. Wagih et al. [28] also point out issues with
using an effective segregation energy for solute concentration models,
demonstrated by the bimodal spectrum of segregation energies in the
Pd-H system due to the occupation of interstitial sites. In response, they
created solute segregation spectra in polycrystals for use in segregation
energy models by performing atomistic simulations of Mg in Al poly-
crystals [26]. This polycrystal approach creates one segregation energy
spectrum for the entire dataset, rather than many small spectra that
are concatenated to represent the dataset, as is necessary for bicrystal
GBs. Wagih et al. used machine learning on these polycrystal spectra
to inform 259 binary alloy system segregation models [27], as well as
some quantum-accurate models [49].

Wagih et al. use polycrystal simulations in order to more fully
capture the behavior of real materials, and they caution against using
bicrystal simulations [26]. They suggest that only thorough samplings
of bicrystal GBs in the 5D space of crystallographic character should
be used for this purpose, promoting the work by Huber et al. in [31]
as an example of sufficient sampling, albeit in a small subspace of
the 5D space. Others have also noted the insufficiency of bicrystal
GB simulations, such as Tucker et al. who use the strain functional
description of atomic configurations to show that symmetric twist
GBs (STGBs) cannot be used to represent polycrystals or amorphous
structures [50]. Wagih et al. also present evidence that STGBs and low
CSL GBs do not represent polycrystals generally [51].

In this work, we compute the segregation energy of 70 million Co
atoms in 7272 Al bicrystal GBs from the Homer GB dataset [52,53]. The
use of this dataset attempts to address most of the concerns raised about
using bicrystal GB simulations to inform GB solute segregation models
in [26,50,51] because it spans the 5D space of GB crystallographic
character. It is also not limited to STGBs or low CSL GBs; it includes
CSL values up to 𝛴999. Additionally, the use of this dataset is a step
owards examining the behavior of solute segregation across the entire
B space, which is noted as an important next step for the field [48],

ince segregation has been found to depend on GB character [54].
o is used as a solute in this work because of its use in similar
orks [27,31], because Al-Co alloys can be used in a wide variety
f applications [55], and because Co additions in small quantities can
itigate challenges in 3D printing of otherwise pure Al [56]. However,

he methods and analysis described in this work could be repeated with
ther solvent-solute combinations. We verify and validate the resulting
ata, including direct comparisons to the works by Huber et al. in [31]
nd Wagih et al. in [27]. Finally, we examine the spectra using several
echniques, including a statistical overview, a classification scheme,
nd reduction to a solute concentration for each GB, and we identify
ome subsets of GBs that deviate significantly from the mean solute
oncentration.

. Methods

.1. Theory of solute segregation

The segregation energy 𝐸seg of an atom is defined as the energy
ifference between a solute atom and a solvent atom at the same site
n the GB minus the same energy difference at a reference atom site
ocated in bulk [13,26]. In this work, we examine the segregation of
o in Al, which is calculated according to:
Co𝑖
seg =

(

𝐸𝑖
Co − 𝐸𝑖

Al
)

−
(

𝐸ref
Co − 𝐸ref

Al
)

(1)

where 𝐸𝑖
Co is the energy of a Co atom in the 𝑖th atomic site in a GB, 𝐸𝑖

Al
is the energy of an Al atom in the 𝑖th atomic site, and 𝐸ref

Co and 𝐸ref
Al are

the energies for a reference atom in bulk, far away from the GB.1 All
of these values are calculated at 0 K. In this formulation, segregation is
nergetically favorable for a site when 𝐸Co𝑖

seg is negative.

1 Eq. (1) is an approximation for the free energy or enthalpy change due to
he solute segregation at the GB. This formulation is only valid in the dilute
imit, since it neglects solute-solute interactions [57].
 d

2 
2.2. Solute segregation energy spectrum creation

In this work, segregation energy data is collected by substituting
single Co atoms into Al GBs from a dataset created by Homer et al. [52,
53] which used the pure Al embedded atom method (EAM) potential
from Mishin et al. [58]. This dataset is referred to in the present work
as the Homer dataset. The Homer dataset contains GB structures that
have 150 different CSL values corresponding to unique disorientations
up to 𝛴999, sampled at intervals of ∼ 5◦ in the disorientation space. For
each CSL value, a sampling of boundary planes was selected to provide
comprehensive coverage, making 7304 unique GBs in the 5D space of
GB crystallographic character.2 The optimal atomic configuration for
each GB was then found by varying 6 parameters of GB construction
while maintaining the 5D constraint of the GB, relaxing each structure
via conjugate gradient energy minimization. In this work we examine
only the minimum energy configuration of the 6 GB construction
parameters. See [52] for additional details about the construction of
the Homer dataset.

Segregation energy values in Eq. (1) were computed in LAMMPS
molecular statics simulations [59] using the Ni-Al-Co empirical EAM
potential from Purja Pun et al. [60], which is the same potential used
by Huber et al. [31] and Wagih et al. [27]. Note that Co is known to
develop a magnetic moment [61], but this EAM potential has been care-
fully fitted to the Al-Co phase diagram [60] and all our calculations are
with individual Co atoms. Therefore, we assume that magnetic effects
are negligible and can be disregarded in this work. In addition, this
potential reproduces similar GB behavior to the Mishin potential [58]
used in the creation of the GB dataset. We start with a relaxed GB
structure and replace an existing Al atom with a Co atom at the same
atom site. The entire GB structure is then relaxed via conjugate gradient
minimization to an energy and force tolerance of 10−10 relative error
and 10−10 eV/Å, respectively. Following minimization, the segregation
energy for the substituted atom, 𝐸Co𝑖

seg , is calculated using Eq. (1).
This process was completed for approximately 70 million atoms

from 7272 GBs: each atom closer than 15 Å to the GB plane was
replaced by a Co atom, as well as a random sample of 100 atoms
for each GB in the range of 15–25 Å to use for bulk reference ener-
gies (𝐸ref

Co&𝐸ref
Al ). Atoms further away from the GB are not substituted

because 𝐸Co𝑖
seg rapidly falls to 0 eV with distance from the GB plane

[62,63].

2.3. Analysis techniques

Since the segregation data for each GB results in a spectrum of val-
ues, we employ multiple methods to simplify comparison of the spectra
across the set of GBs. Two methods that require additional description
are (i) a classification scheme and (ii) a GB solute concentration, which
are described below.

For reasons that will be clear in the verification Section 3.1.1, we
implement a classification scheme that classifies any atom with near-
bulk segregation behavior as ‘‘negligibly segregating.’’ We do this be-
cause the segregation energy values of the bulk atoms actually take on
a range of values about 0 eV and GB atoms with segregation energy val-
ues in that same range would behave the same as if they were in bulk.
We designate segregation energy values in the 95% interval3 of the bulk
atom distribution as ‘‘negligibly segregating.’’ This allows us to more
easily determine which atoms are ‘‘segregating’’ and ‘‘anti-segregating’’

2 10 of the 7304 GB structures in the Homer dataset [53] are excluded from
his work due to computational difficulties. See Supplemental Table S3 for a
ist of excluded GBs.

3 Supplemental Figure S3 shows a number of intervals on the distribution
f FCC atoms, from which we selected the 95% interval for the ‘‘negligible’’
lassification. Supplemental Figure S4 shows a number of intervals on the

istribution of non-FCC atoms.
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because they are outside the range of typical bulk atom segrega-
tion energies. The ranges for these three possible classifications are:
(i) segregating; 𝐸Co𝑖

seg < −0.0875 eV, (ii) negligibly segregating; −0.0875 eV
𝐸Co𝑖
seg < +0.018 eV, and (iii) anti-segregating; 𝐸Co𝑖

seg ≥ +0.018 eV.
A standard measure of solute segregation at GBs is the solute con-

entration at the GB in the dilute limit, 𝑐GB. Early literature calculated
his value using a single effective segregation energy [14] or a con-
inuous distribution of segregation energies for atoms in the GB [64].
his type of approach is computationally simple but has some pitfalls
as mentioned in Section 1) that can be avoided by using a discrete
egregation energy spectrum. Coghlan and White first created such a
pectrum [22], which was later adapted by Huber et al. [31] for an
rray of individually described atoms in a single GB. The concentration
f solute atoms in the GB is then calculated according to:

GB = 1
𝑁

∑

𝑖

[

1 +
1 − 𝑐bulk
𝑐bulk

exp
(

𝐸Co𝑖
seg ∕𝑘B𝑇

)

]−1
(2)

where 𝐸Co𝑖
seg is defined by Eq. (1), 𝑁 is the number of sites in the GB,

𝑘B is the Boltzmann constant, 𝑇 is the temperature, and 𝑐bulk is the
concentration of solute in bulk, held fixed as an independent variable.
Bulk atom sites are chosen for solute occupancy at finite temperatures
with increasing probability, lowering 𝑐GB; the temperature dependence
of this value is demonstrated for this work in Section 4, and is a
well known feature of GB segregation [65]. The 1−𝑐bulk

𝑐bulk
term scales the

ermi level down as bulk atom sites are filled at finite temperatures,
s discussed in [31]. In this work we use a bulk concentration of
bulk = 0.2 at.%, chosen to be the same as in Huber et al. [31].

. Verification & validation

An important step in collection of any data is the verification and
alidation of the results [66]. In the following sections we verify
hat the calculated values are representative of true segregation en-
rgies and validate the results by comparing them to other published
xamples.

.1. Verification

In verifying the data collected in this work, we noted that some
ata was incorrect or did not match expected behavior. The following
ections discuss the process of determining which data could be verified
or accuracy and inclusion in the work.

.1.1. Verification of bulk segregation energies
By definition (Eq. (1)), solute atoms in the bulk have segregation

nergies of 0 eV. In order to verify this behavior, we must classify atoms
s either bulk or GB atoms. The method by which the GB atoms are
eparated from the bulk atoms will have an impact on whether bulk
toms exhibit the expected 0 eV segregation energy. Since a segregation
nergy spectrum typically only includes GB atoms, the classification
cheme can also affect the segregation energy spectra based on the
nclusion of atoms near or in the GB that may or may not have
egregation energies near 0 eV.

Bulk atoms are often identified in simulations by adaptive common
neighbor analysis (aCNA), as employed in [26–28,30–33], which can
identify each atom’s environment as HCP, BCC, ICO, FCC or other [67].
Alternatively, the centrosymmetry parameter (CSP) [68] can be used to
identify atom environments where the expected centrosymmetry breaks
down, such as near a GB in an FCC-type crystal structure. One could
also identify GB atoms that are within some fixed width (e.g. ±5 Å)
f the center of the GB. There are several other less commonly used
ethods to determine bulk atoms, such as the dislocation extraction

lgorithm (DXA) [69,70] used in [42], the per-site Voronoi volume
riterion used in [35], and the experimentally determined one-atomic
ayer region from the GB center [71,72], as employed in [29].
 c

3 
There are challenges with using aCNA, CSP, and DXA as classifi-
ation methods because they were designed for purposes other than
etermining whether an atom belongs to a GB. The aCNA method excels
t structure identification, but tolerates distortions of atoms in those
tructures. The CSP method, since it is continuous, is better suited to
ifferentiate smaller distortions. However, it has no defined cutoff value
or discerning when a distortion has changed the structure sufficiently
o be classified as something other than the centrosymmetric structure
f interest (FCC in this case); this is left for the user to choose. The fixed
idth method does not generalize easily to polycrystal simulations, and
ue to relaxation in the positions of atoms near the initial position of
he GB plane, defining the center of the GB can be difficult, especially
n the case of GB faceting. Additionally, the width of the GBs across
single dataset can very drastically (e.g. Fig. 5 in ref [52] shows that

he width of GBs in the Homer dataset range from 3–18 Å, and the
election of a single fixed width would bias the number of FCC atoms
ncluded). Since other methods suffer from similar challenges, there is
o clear way to determine whether an atom definitively belongs to the
B because the transition from bulk to GB can be subtle; elastic strains

hat cause small deviation from a ‘‘perfect’’ bulk structure are present
ven at large distances.

These challenges and the differences between the most commonly
sed methods of aCNA and CSP classification are illustrated in Fig. 1
or (a) a [100] symmetric tilt GB with an array of edge dislocations
nd for (b) a high-angle GB. The atoms are colored according to their
egregation energy value (red for anti-segregating, blue for segregating,
ray for negligible). The figure depicts the full structure of the GB in the
‘All atoms’’ row and the three below that depict the use of progressively
maller CSP threshold value to remove ‘‘bulk’’ atoms. The ‘‘CNA’’ row
hows that the aCNA is aggressive in its removal of ‘‘bulk’’ atoms, since
ts goal is not to identify local distortions in structure but clear changes
n crystal structure. The result is that many surrounding atoms with
on-negligible segregation energy values are removed by aCNA bulk
etermination.

Fig. 1 illustrates that there is no definitive approach to atom selec-
ion for 0 eV bulk GB segregation energies using aCNA or CSP. In this
ork, we present results for bulk atom selection using both aCNA and
SP methods to compare the impact the selection method has since the
CNA method removes many atoms that could meaningfully contribute
o segregation energy spectra. We also show cumulative segregation
nergy spectra of several fixed width cutoffs in Supplemental Figures
5 and S6, where liberal width leads to CSP-like distributions and
onservative width leads to aCNA-like distributions. In this work, CSP
abeled results use a CSP cutoff of 0.1, as it includes a reasonable num-
er of surrounding atoms with non-negligible values of the segregation
nergies while limiting the number of bulk atoms with negligible values
f the segregation energy.

Supplemental Section S1 contains a discussion comparing bulk atom
election by the aCNA and CSP techniques. The discussion can be
ummarized in the segregation energy distributions of the bulk atoms
y the two classification techniques shown in Fig. 2. The majority
f bulk atoms have segregation energy values close to 0 eV, though
here is a larger than expected variation in the local environments of
ulk atoms as determined by both aCNA and CSP. In short, both bulk
tom classification schemes classify some atoms as bulk even though
hey have non-negligible segregation energy values. Given the range
f elastic strains near defects, it remains a challenge to find a single
efensible method to identify GB and bulk atoms. By contrasting the
CNA and CSP bulk classification schemes in this work, we illustrate
he difference between conservative and liberal classification schemes.
he determination of a better method for selecting GB atoms is left for
he community to resolve.

Recalling that theory defines segregation energy of an atom in
he bulk as equal to 0 eV, one would expect segregation energies to

onverge to 0 eV as distance from the GB plane increases [62,63]. In
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Fig. 1. Atomic structures of (a) a [100] symmetric tilt GB with an array of edge
dislocations and (b) a high angle, low symmetry GB. Both GBs are shown with ‘‘All
atoms’’, ‘‘CSP’’ bulk atom removal (2nd row: CSP ≤ 0.3, 3rd row: CSP ≤ 0.1, 4th
row: CSP ≤ 0.01), and adaptive ‘‘CNA’’ bulk atom removal. Red atoms have positive
segregation energies, blue have negative, and gray have negligible, according to the
colorbar shown. In both cases, the positive 𝑦-axis corresponds to the positive 𝑧-axis
in the GB simulations, and the GB plane is located at 𝑧 = 0 Å. The crystallographic
directions for each are given in Supplemental Table S2. The GB images are produced
using OVITO [73]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Logarithmic scale of the distribution of segregation energies for bulk atoms as
determined by CSP ≤ 0.1 (blue) and aCNA (orange). Bin width is 0.008 eV. The aCNA
peak is broader because it classifies more distorted atoms as bulk. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

an initial analysis, it was found that while the majority of data behaved
in this way, some did not converge to 0 eV more than 15 Å away
4 
Fig. 3. (Top) Histograms of segregation energy for GB atoms (blue), bulk atoms (gray),
and atoms in GBs excluded due to invalid calculations (red). Bin width is 0.165 eV.
A linear-scale histogram with the same data is included as Supplemental Figure S8 to
show how low segregation energies contribute negligibly to the distribution. (Bottom)
Distance from the GB plane in Å as a function of segregation energy, (𝐸Co𝑖

seg ). In the GB
construction simulations, the GB plane is initialized at 𝑧 = 0 Å and is allowed to shift
as the simulation cell relaxes, however, this distance is calculated as a distance from
𝑧 = 0 Å. The non-converged and low energy GBs that were removed from analysis
as described in Sections 3.1.1 and 3.1.2 are shown in red, the bulk FCC atoms as
determined by a CSP cutoff of 0.1 are shown in gray, and the non-bulk GB atoms are
shown in blue. The distribution decays to 0 eV as the distance from the GB increases
(with the exception of the excluded GBs, shown in red), as predicted in [62,63]. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

from the GB plane. This is illustrated in a scatter plot of segregation
energy vs. distance from the GB plane in Fig. 3 for three different
populations. These populations make up the 70 million atoms and are:
the bulk atoms (gray), the GB atoms (blue), and atoms belonging to
GBs excluded from the dataset because of errors described here and the
following section (red). Four GBs in particular account for the scatter
(non-zero segregation energy values) at large distance from the GB, and
were therefore excluded from further analysis. These four GBs are listed
in Supplemental Table S3 along with GBs excluded for reasons that are
discussed in the next section. It can be seen in Fig. 3 that there are
still GB atoms at large distance from the GB, but in all cases these have
segregation energy values near zero; furthermore, there are very few of
these, so they contribute negligibly to the spectra of individual GBs.

3.1.2. Challenges due to GB restructuring
There are a small number of very negative segregation energy

values, far below what would be expected for this system, which are
illustrated by the red data points in Fig. 3. When substituting a solute
atom for segregation energy calculations, the energy of the new system
is calculated after the system has relaxed into the new configuration
that accommodates the solute atom. Usually, this relaxation results
in almost no change to the atom positions. However, non-negligible
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changes to the atom positions occasionally occur. The reference energy
𝐸𝑖
Al (in Eq. (1)) pertains to the original pre-substitution configura-

tion and not the restructured configuration, therefore the segregation
energy values are not valid when significant restructuring occurs. A
valid segregation energy value for the restructured configuration would
require calculation of a new reference energy, 𝐸𝑖

Al.
To determine when GB restructuring occurs and the magnitude

of such restructuring, we calculated the mean squared displacement
(MSD) for all atoms in a GB during the relaxation following solute
substitution. Generally, the MSD at GB atom sites was found to be
higher than the MSD at FCC bulk atoms (see Supplemental Figure S7),
but there is considerable overlap between the two distributions. A plot
of segregation energy vs. MSD is shown in Supplemental Figure S9. In
this figure it can be seen that (i) the most extreme segregation energies
occur when the MSD values are higher and (ii) there are also lots of
reasonable segregation energies with relatively large MSD values. Here,
we examine examples of these two cases.

In one case where the segregation energy was very negative,
𝐸Co𝑖
seg = −6.1 eV, and the MSD value was large, 0.076 Å2, considerable

estructuring occurred during the post-substitution relaxation. To check
he accuracy of this atom’s segregation energy value, new reference
nergy values were determined using the restructured GB for the
eference energies. The segregation energy value was re-calculated to
e 𝐸Co𝑖

seg = −0.45 eV. Restructuring clearly caused the reference energies
o be invalid for the post-substitution GB structure in this case, and MSD
as a good determination of this invalidity.

In another case where the segregation energy was in the nor-
al range, 𝐸Co𝑖

seg = −0.38 eV, but the MSD was still reasonably large,
× 10−4 Å2, there was minimal restructuring. The accuracy of this
tom’s segregation energy value was also checked, and even with new
eference energy values, the segregation energy value remained the
ame at 𝐸Co𝑖

seg = −0.38 eV. In this case, the atomic shuffles had no impact
n the segregation energy and the larger than expected MSD values
ere not indicative of invalid segregation energy values.

Although some high MSD value simulations yield valid segregation
nergies, we attempted to address the issue of invalid segregation
nergies caused by restructuring by omitting atoms where MSD values
ere large. We defined a high-MSD cutoff of 10−4 Å2, since it was above

his MSD value that the low segregation energies started to diverge
cf. Supplemental Figure S9). Unfortunately, this approach removed 7
ntire GBs and 38% of the atoms from analysis. Additionally, in some
ndividual GBs, most of the data was lost, as illustrated in Supplemental
igure S10, which shows the effect of removing atoms with high MSD
alues. This approach also removed segregation energy values that
ere valid, as indicated by the second case examined above. This
pproach causes severe data loss and could lead to misinterpretations
f the results.

Additional analysis showed that most of the extreme (and likely
nvalid) segregation energy values belonged to a small number of GBs,
nd these GBs had a high percentage of extreme segregation energy
alues. In other words, certain GBs were prone to restructuring upon
ubstitution of a solute atom. While not a perfect solution, we removed
8 GBs with segregation energy data less than −3.0 eV, which belong to
he population of atoms in the excluded GBs shown in red in Fig. 3 and
isted in Supplemental Table S3. Supplemental Figure S11 shows the
egregation energy spectra for other possible segregation energy cutoff
alues. The chosen cutoff value of −3.0 eV removes most of the extreme
alues while only removing 0.25% of the GBs simulated.

While this approach leaves some invalid data in the spectrum due
o restructuring in individual simulations, the removal of these 18 GBs
eemed the best option, as it only removes 0.25% of the GBs. We
ssume that the contributions of any remaining invalid datapoints to
he spectrum is minimal, as illustrated in Fig. 3. One way to get around

his issue in the future would be to recalculate the reference energy

5 
alues any time restructuring is detected. Unfortunately, recalculating
hese reference energies after the fact was impractical for this work.

.1.3. Final dataset
As discussed in Section 3.1.1, 4 GBs were removed due to the

ailure to converge to a zero segregation energy value in the bulk.
nother 18 GBs were removed from the dataset because they possessed
xtremely low segregation energy values, as discussed in Section 3.1.2.
here were 10 GBs that were not included due to issues refilling the
artially full simulation cells in the dataset. These 32 GBs are listed in
upplemental Table S3. The remaining data contains 70 million atoms
ith segregation energy values to analyze from 7272 unique GBs. With
ulk atoms removed via CSP or aCNA, this number is reduced to 18
r 11.5 million GB atoms, respectively. Despite the imperfections of
hese methods as discussed above, it is anticipated that this dataset will
rovide unique insight into segregation energy trends and is available
or download [74]. Having verified the Homer dataset here, we validate
t in the following section.

.2. Validation

In order to validate our work, we compare our results to two
omputational datasets of Co segregation energies in Al GBs that use
he same EAM potential [60] and similar methods to this work; no
xperimental data for Co enrichment in an Al matrix could be found.
uber et al. examine a number of 𝛴5 GBs in [31], and Wagih et al.
xamine a polycrystal with a variety of different GBs and focus on the
verall distribution of segregation energies in [27]. These two datasets
re referred to as the Huber dataset and Wagih dataset in the following
ections where they are compared with the present results obtained
rom the Homer dataset.

.2.1. Comparison to selected 𝛴5 GBs
Huber et al. examine solute segregation in a GB dataset of 38

5(53.1◦[100]) GBs [31]. The Homer dataset includes 17 GBs of this
ype, although the two datasets only have four GBs that share all 5
rystallographic degrees of freedom. Fig. 4 compares the segregation
nergy spectra for these four GBs. Fig. 4a is from the Huber dataset
ith a kernel density estimation (KDE) fit shown with a solid line and
model fit described in [31] shown with a dashed line. Fig. 4b is from

he present work using the Homer dataset, with segregation energies
or non-bulk atoms as determined by aCNA, which is the same method
sed by Huber et al. [31]. Fig. 4c is also from the present work using
he Homer dataset, but with segregation energies for non-bulk atoms
etermined by CSP. KDE fits to the distributions in (b) and (c) are
hown with solid lines.

The locations of segregation energy peaks and their relative mag-
itudes are similar. The [02̄1] GB has the most favorable comparison,
hough the Huber dataset in (a) has a small scattering of infrequent
eaks that do not show up in the aCNA Homer dataset in (b). In
c), the CSP Homer dataset has an additional peak at approximately
0.05 eV. The [01̄2] GB has peaks in the same general locations, but

slightly different relative magnitudes, again with more scatter in the
peaks of the Huber dataset. The CSP Homer dataset again has a large
population of atoms with segregation energies near −0.10 eV and an
additional peak near 0.10 eV in both (b) and (c). The [100] GB in our
work has a missing peak at approximately −0.55 eV, and an additional
missing peak near −0.01 eV in (b) that is present in (c). Finally, the
[11̄2] GB has more distinct peaks in (b) and (c) that make up the
multimodal distributions around −0.50 eV, 0.00 eV, and 0.30 eV in (a),
and a higher relative magnitude in the peak near 0.00 eV.

In all of the GBs, (c) seems to have more data around −0.05 eV,
indicating that bulk determination via CSP leaves a larger population
of atoms with near-negligible segregation energies. These same atoms
are removed by the aCNA bulk determination method, which may

explain why aCNA is used in many other works for bulk classification.
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Fig. 4. Segregation energy distributions of the shared 𝛴5 GBs between the (a) Huber dataset from [31] (bin width 0.04 eV) and the (b/c) Homer dataset (bin width 0.01 eV).
(a) has two fit lines: a KDE fit to the data (solid) and a model fit discussed in [31] (dashed). (b) includes the non-bulk atoms from this work as determined by aCNA (the same
method of FCC atom removal as is used in [31]). (c) includes the non-bulk atoms from this work as determined by CSP. The Huber dataset in (a) is reproduced from [31] and
relabeled according to the Homer dataset labeling conventions [52,53].
However, it can be noted that these values are not identically zero, and
contribute to the overall relative frequency of the various peaks. This
observation is not to advocate for one method over another, but simply
to acknowledge a bias introduced by the method of bulk and GB atom
selection.

The segregation energy spectra of the two datasets are in general
agreement, with appropriate magnitudes and frequency of occurrence.
Clearly there is not an exact match, perhaps due to the GBs not having
identical structures or not extracting the same GB atoms. For example,
the high symmetry structure of the 𝛴5 GBs in column 1 of Fig. 4
has only 6 GB sites as determined by CNA. Any small variations in
GB structure and/or GB atom selection could result in the addition
or subtraction of a GB atom, which would lead to large changes in
the spectra by adding or subtracting entire peaks. For example, the
missing peak at approximately −0.55 eV in the [100] GB from the Homer
dataset when using both aCNA and CSP indicates that the local atomic
environment making up that peak in the Huber dataset is not found in
the Homer dataset. With no atomic structures from the Huber dataset
published, we are unable to verify this conclusion. However, given the
fact that we cannot guarantee identical atomic structures, we consider
the general agreement of the segregation energy spectra to be sufficient
validation of the Homer dataset in comparison with the Huber dataset.

3.2.2. Comparison to polycrystal spectrum

While the Homer dataset contains only bicrystal GBs, most ma-
terials are polycrystalline, containing a GB network with additional
features such as triple junctions and facets. Some recent works have
focused on extracting segregation energy distributions from polycrys-
talline simulations [26–29,50,51]. Here we compare the spectrum of
segregation energies obtained from bicrystals of the present work with
that obtained by Wagih et al. from a polycrystal [27].
6 
The Al-Co segregation energy spectrum from the Wagih dataset is
represented by a skew-normal distribution of the form:

𝐹 (𝐸Co𝑖
seg ) =
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with the fitted location parameter 𝜇, scale parameter 𝜎, and shape
parameter 𝛼. Note that these values are not the typical mean, standard
deviation, and shape parameter of a normal distribution.4

The segregation energy spectra for this work are presented in Fig. 5.
The spectra from the Homer dataset are obtained by combining the
individual GB segregation energy spectra from all 7272 GBs. There
are two distributions for the two methods by which bulk atoms are
removed: aCNA in blue and CSP in orange. The figure includes the
Wagih spectrum, scaled to match the two distributions in this work,
plotted as dashed black lines, and skew-normal fits in solid lines in
corresponding colors to the spectra. Note that the authors use a skew-
normal form for the sake of comparison, and did not attempt to find
another functional form with a better fit. See Supplemental Figures S5
and S6 for the spectra created using fixed width bulk determination.

First, we note that the inclusion of bulk-like atoms using the CSP
approach leads to a much larger peak near the origin, though other
parts of the histogram of segregation energies are very similar between
the aCNA and CSP distributions of the Homer dataset. A comparison
of statistical measures of the distributions, in the form of Eq. (3), are
provided in Table 1. It can be seen from Table 1 that the aCNA and
CSP distributions of the Homer dataset are in general agreement.

To compare the current data to the Wagih dataset, we scaled the
magnitude of the skew-normal distribution fitted to the Wagih dataset
to match the magnitude of both distributions of the Homer dataset.
Note that the Wagih dataset uses aCNA for bulk classification. Despite

4 Others have also observed the skew-normal form of the spectrum of
segregation energies in GBs, including when bicrystals are used [75,76].
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Fig. 5. The spectrum of segregation energies aggregated from all GBs simulated in this
work, with all bulk atoms removed via aCNA (blue) and via CSP (orange), with fit lines
for their respective skew-normal distributions in the form of Eq. (3) in their respective
colors. The dashed black lines are the polycrystal spectrum from Wagih et al. in [27],
scaled to both of this work’s distributions. Inset are the same spectra on a logarithmic
scale. Statistics for each skew-normal distribution are given in Table 1. The spectrum
of all atoms (including bulk atoms) is shown in Supplemental Figure S12. Bin width
is 0.0412 eV. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Comparison of skew-normal statistical measures for the distributions shown in Fig. 5.
These parameters—the fitted location parameter 𝜇, scale parameter 𝜎, and shape
parameter 𝛼—are for the skew-normal distribution described in Eq. (3). Note that
these are not the usual mean, standard deviation, or shape parameter of a Gaussian
distribution. Fixed width distributions are shown in Supplemental Figure S5 and
Supplemental Table S1.

Dataset 𝜇 𝜎 𝛼

Polycrystal [27] −0.0104 0.3224 −3.300
Bicrystals, no FCC via aCNA 0.0328 0.3794 −2.424
Bicrystals, no FCC via CSP 0.0706 0.3502 −3.365

their quantitative and statistical similarity, there are notable differences
in the bicrystal and polycrystal spectra. In comparison to the polycrys-
tal spectrum, the bicrystal spectra have a slightly higher number of sites
with segregation energies just greater than zero and a slightly lower
number of sites with segregation energies just less than zero. In the
inset with the frequency on a logarithmic scale, it can be seen that
there is also significant divergence of both bicrystal spectra from the
polycrystal spectrum in the lower tail, but this difference is negligible
in the linear frequency scale.

The source of the differences in the two spectra is likely due to the
differences in the datasets. First, the polycrystal dataset has 16 distinct
grains, 72 GBs, and ∼105 non-bulk GB atoms [27], in comparison to
the 2×7272 distinct grains, 7272 GBs, and ∼106 non-bulk GB atoms
for the bicrystals in the present work. In addition, the polycrystalline
simulation has atomic environments found in GB triple junctions and
quadruple nodes that may not appear in bicrystal simulations, or if
those environments show up in bicrystal GB simulations, they may
appear with a different frequency than they do in a polycrystalline
structure.

It has been shown that small populations of bicrystal GBs fail to
produce the same segregation energy distributions as those of polycrys-
talline materials [50,51], but that as the population diversity increases
with GBs of lower symmetry, there is better coverage of the atomic
environment space [51]. The present dataset of 7272 bicrystal GBs is
comprised of mostly low symmetry GBs; only 89 of the 7272 GBs, or
7 
1.2%, have low CSL values (i.e., 𝛴 ≤ 10), suggesting that issues related
to diversity in the dataset are minimized by the large variety of GBs in
the Homer dataset.

Conversely, the polycrystal simulation with its 72 GBs may not
provide adequate sampling of the variation in structure across the 5D
space, or be large enough to be considered a representative volume
element (RVE) such that it is truly representative of atomic environ-
ments in a polycrystal. The Mackenzie Distribution, which represents
the distribution of disorientation angles for a polycrystalline sample
with random cubic crystal orientations [77,78], can be used as a
justification for the selection of an RVE [79]. As shown in Figure 3
of [52], the Homer bicrystal dataset gives a reasonable approximation
of the Mackenzie Distribution. The Wagih polycrystal dataset does
not claim to follow the Mackenzie Distribution of disorientations, nor
do they consider their simulation to be an RVE. Wagih et al. do
however assert that their simulations are similar enough to randomly
oriented grains to represent the local atomic environments present in
the polycrystalline GB space, and that the segregation energy spectrum
obtained is universal to any segregation energy spectrum obtained from
a polycrystal [26,51].

At this point, it is unclear if the differences between the Wagih and
aCNA bicrystal distributions are significant. The degree to which either
of the methods incorporates aspects of the distribution of GBs that are
critical to a proper representation of segregation energies in a diverse
polycrystal is also unclear. The discussion leads to several unanswered
questions:

1. How many GB types would be needed to establish an RVE for
segregation energies? (i.e., is the polycrystal sample from Wagih
et al. large enough? Does the present work have enough and
sufficiently diverse bicrystals to represent a polycrystal?)

2. How would a change in GB texture of the polycrystal change
the GB sampling and thus the segregation energy spectrum?
(i.e., does the texture used in the work of Wagih et al. bias the
sampled spectrum significantly? Is it appropriate to make these
distributions from a random sampling?)

3. To what degree do the local atomic environments of triple junc-
tions and quadruple nodes affect the sampled segregation energy
spectrum? (i.e., the volume fraction of such atomic environ-
ments will be different in nanometer-sized grains as compared
with micron-sized grains, and may be entirely absent from the
bicrystal dataset of this work.)

We leave these questions to the community to address. Nevertheless,
the similarity in the two spectra is seen as a positive validation of the
methods and use of the Homer GB dataset in this work.

4. Results & discussion

Having provided some context and discussion of the results in the
Verification & Validation section, we begin our analysis here by taking
several different views of the segregation energy spectra produced in
this work. Note that most of the results presented in this section are
produced using CSP to determine bulk atoms, but similar results would
be obtained using aCNA, as shown in the supplemental materials and
described in Section 4.4.

Examining the spectra of segregation energies across the 5D space
is challenging because at each point in the space we obtain a spec-
trum of segregation energies. To provide insight into the dataset, we
employ several different tactics: (i) statistical measures of the spectra,
(ii) classification of the segregation energy spectra into fractions of
atoms segregating, anti-segregating, and negligibly segregating, and
(iii) calculation of a GB solute concentration for each GB (𝑐GB defined
in Eq. (2)) based on Coghlan and White’s model [22]. Each of these

provide different insight into trends in the large set of GBs.
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Table 2
Statistics for the 𝛴5 GBs shown in Fig. 4. Note that the max, mean, and min values in the table refer to the maximum, mean, and minimum
values from each GB’s 𝐸Co𝑖

seg spectrum.

GB max (eV) mean (eV) min (eV) 𝑓seg 𝑓negl 𝑓anti 𝑐GB (at.%) 𝛾 ( mJ
m2 ) 𝑉exc ( Å

3

Å
2 )

021 0.52 −0.01 −0.31 0.29 0.29 0.43 28.9 494 0.529
012 0.46 −0.14 −0.53 0.47 0.40 0.14 37.7 496 0.347
100 0.34 −0.05 −0.20 0.44 0.44 0.11 35.5 326 0.296
112 0.30 −0.18 −0.57 0.58 0.24 0.18 59.7 472 0.340
Fig. 6. Maximum (red), mean (green), and minimum (blue) values of the segregation
energy, 𝐸Co𝑖

seg , spectrum for each GB vs. their GB interface energy, 𝛾. Linear fits for each
are shown in black. The mean segregation energy for the [111] symmetric twist GBs are
shown with black ‘‘x’’ markings. The range of segregation energies increases with GB
energy, and the mean segregation energy has an inverse relationship with increasing GB
energy. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

4.1. Statistical measures of the spectra

In this section, to examine the segregation energy spectra across all
of the dataset, we present the mean, maximum, and minimum values of
the multimodal distributions of each GB’s segregation energy spectrum.
As an example, the maximum, mean, and minimum values for the 𝛴5
GB spectra shown in Fig. 4c are given in Table 2.

Although this represents a significant reduction of information,
some observations can be still made by comparing these values against
one-dimensional parameterizations of the GB dataset. For example,
these values are plotted as a function of GB interface energy, 𝛾, in
Fig. 6 and disorientation angle in Supplemental Figure S13. Generally,
the mean segregation energy of a GB becomes more negative as GB
energy increases, as shown by the green datapoints and trendline in
Fig. 6. Note that the [111] symmetric twist GBs (aside from the lowest
energy perfect twin GB) have a slight increase of the mean segregation
energy as GB energy increases, contrary to the general trend. We will
further analyze this subset of GBs in Section 4.3 because of their likely
presence in Al [80]. The average range of segregation energies also
increases as a function of GB energy, as indicated by the linear fits to
the three populations shown in black. This is probably due to greater
deviation from the bulk FCC structure in the higher energy GBs, which
likely leads to a greater distribution of segregation energies in the solute
atom sites. Finally, it can be seen in Fig. 6 that the lower the mean
segregation energy for a GB, the higher the probability for segregation
in that GB.
8 
GB energy, 𝛾, has been shown to have a Read-Shockley relationship
with disorientation angle [81,82]. Despite the relationship observed
between GB energy and mean segregation energy, there is no ob-
servable transitive relationship between mean segregation energy and
disorientation angle (see Supplemental Figure S13). It is interesting that
the two separate correlations do not result in a correlation between
segregation energy and disorientation angle. While the correlation of
segregation energy with GB energy provides some insight to global
trends in segregation energy, we continue with more detailed analyses
of the dataset.

4.2. Classification of the spectra

To examine the segregation energy spectra in this section, we
employ the segregation energy classifications described in Section 2.3.
This approach classifies each atom based on its segregation energy
value into one of three categories: (i) segregating (𝐸Co𝑖

seg < −0.0875 eV),
(ii) negligibly segregating (−0.0875 eV ≤ 𝐸Co𝑖

seg < +0.018 eV), or (iii)
anti-segregating (𝐸Co𝑖

seg ≥ +0.018 eV). Using these classifications, we
compute the fraction of atoms in each GB that fall into each category,
(i) 𝑓seg, (ii) 𝑓negl, and (iii) 𝑓anti. For each GB, these fractions add to 1
(i.e., 𝑓seg + 𝑓negl + 𝑓anti = 1). As an example, the 𝑓seg, 𝑓negl, and 𝑓anti
values for the 𝛴5 GB spectra shown in Fig. 4c are given in Table 2.

The distributions of these fractions for the 7272 GBs are shown in
Fig. 7a; these are the distributions for non-bulk atoms identified using
the CSP scheme. The mean value for these categories over all GBs are
𝑓seg = 0.62, 𝑓anti = 0.15, and 𝑓negl = 0.23, as shown by the dotted vertical
lines in Fig. 7a. The global fractions in the aggregated spectrum are
𝑓seg = 0.63, 𝑓anti = 0.15, and 𝑓negl = 0.22.

In Fig. 7b, this same data is shown on a ternary plot, that shows
the 2D plane that the 3D points all lie on, since they all add to 1
(i.e., 𝑓seg+𝑓negl+𝑓anti = 1). The data points in the plot are colored by GB
energy, 𝛾. It can be seen in Fig. 7b that increased GB energy corresponds
to an increased fraction of segregating atoms, 𝑓seg. This supports the
trend for more negative segregation energies with higher GB energy
observed in Fig. 6. To see the same plots for aCNA, see Supplemental
Figure S14.

As expected from the histograms, the general distribution of points
in Fig. 7b is located closest to the ‘‘all segregating’’ corner of the
triangle. There are several notable outliers. The [111] perfect twin GB is
located at ‘‘all anti-segregating’’ and its closest neighbor in the ternary
plot has the same misorientation of 60◦ about the [111] axis. [100],
[110] and [111] disorientation axis GBs make up 50% of the GBs along
and near the top right edge of the triangle with 𝑓negl ≤ 0.1. 34% of
the GBs with 𝑓anti ≤ 0.075 belong to the [111] disorientation axis.5
Thus, many of the outliers in the ternary plot belong to high symmetry
disorientation axes. Additionally, it can be seen that there are a number
of GBs along the left side of the plot which have no anti-segregating
atoms, though this is perhaps unsurprising given the proximity of the
distribution to this edge and the tendency to segregate in this system.

In short, most GBs have a tendency to segregate, evidenced by
the 𝑓seg value of 0.62. Additionally, high energy GBs have a tendency

5 To see the ternary plot with the [111] disorientation axis GBs highlighted,
see Supplemental Figure S15.
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Fig. 7. (a) Histograms of 𝑓seg (blue), 𝑓anti (red), 𝑓negl (gray) for GB atoms as determined
by CSP. The mean of each histogram is marked with a dashed vertical line of a
corresponding color. Bin size is 0.005 eV. (b) Ternary scatter plot of the same data,
colored by GB energy, 𝛾. Since the sum of these values is 1 (i.e., 𝑓seg +𝑓anti +𝑓negl = 1),
they lie on a 2D plane in 3D space. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

to segregate more than lower energy GBs, which is supported by the
results shown in Fig. 6. However, while these trends are interesting, this
analysis is still insufficient to predict segregation behavior generally.

4.3. Solute concentration at GBs

One of the challenges with the representations of the segregation
energy spectra analyzed in the preceding sections is that they still have
multiple values for each GB, which makes it hard to analyze trends
across the 5D space. As such, we have included the calculation of the
GB solute concentration, 𝑐GB, from Eq. (2). This singular value for each
GB allows the display of some trends more clearly in subsets of the
5D space that still take into account attributes of the full spectrum
of GB energies, as the value is computed from a sum over the whole
spectrum of GB atoms in each GB. Note that most of the 𝑐GB values
presented in this section are well above the dilute limit; as such, many
of the assumptions made in the calculation of the concentration values
(e.g., neglecting solute-solute interactions) are invalid. However, we
assume that the general trends observed in 𝑐GB are still valid.

As with the other sections, the 𝑐GB values for the 𝛴5 GB spectra
shown in Fig. 4c are given in Table 2. However, because 𝑐GB takes into
account the full spectrum, we can more easily examine the impact of
the GB crystallographic character on segregation. We do this first in
9 
Fig. 8. (a) Plot of GB energy and GB excess volume as functions of disorientation angle
for the [111] symmetric twist GBs. (b) Plot of the segregation energy spectra for GB
atoms as determined by CSP (orange) and aCNA (blue) in the [111] symmetric twist
GBs, against their disorientation angles. Aside from the perfect twin GB at 60◦ twist,
their segregation energies are almost always negative, or favorable to segregation. The
‘‘negligible segregation’’ (−0.0875 eV ≤ 𝐸Co𝑖

seg < +0.018 eV) limits are shown with dotted
black lines. (c) Concentration of solute at the GB, 𝑐GB, as a function of disorientation
angle and temperature for the [111] symmetric twist GBs, for CSP (solid) and aCNA
(dotted). This is calculated using Eq. (2). The bulk concentration, 𝑐bulk = 0.2 at.%, is
shown with a solid black line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

the set of [111] symmetric twist GBs noted in [52] and mentioned
in Section 4.1 because of their likely appearance in Al due to their
low energy [80] and because they show interesting segregation energy
results. However, care should be exercised in extrapolating the [111]
symmetric twist GB results to the rest of the dataset precisely because
they are low energy GBs and may behave differently. Note that the
disorientation angles related to these particular boundaries also define
their twist angles about the [111] axis.
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The [111] symmetric twist GBs exhibit an energy trend of an
inverted parabola with low GB energy values at low and high disori-
entation angles, illustrated in blue in Fig. 8a. A corresponding trend
for GB excess volume is also shown in orange in Fig. 8a. Fig. 8b plots
the segregation energy spectra for the GB atoms as determined by
aCNA (blue) and CSP (orange) for each of these GBs, against their
disorientation angle. Note the data loss from using aCNA (blue) over
CSP (orange), which was discussed in Section 3.1.1. Also note the
exclusion of many near-bulk segregation energies in the CSP (orange)
spectrum.

Although a significant portion of each GB’s spectra falls in the
‘‘negligible segregation’’ category shown by horizontal dotted black
lines in Fig. 8b, a majority do not, and almost all of the non-negligible
segregation energies are negative, implying that a Co atom added to an
Al [111] symmetric twist GB will prefer to segregate to the GB. With
the exception of the perfect twin, this segregation data shown in Fig. 8b
generally runs counter to the general trend that was observed in Fig. 6
for lower energy GBs to have less segregation than higher energy GBs.
This is evidenced by the more negative segregation energy spectra in
Fig. 8b for the corresponding lower GB energies in Fig. 8a, and was
perhaps expected from the analysis of the [111] symmetric twist GBs
shown with black ‘‘x’’ markings in Fig. 6.

In Fig. 8c, we show the 𝑐GB values as determined by CSP (solid) and
aCNA (dotted) for the [111] symmetric twist GBs as a function of disori-
entation angle at 3 different temperatures. In addition to the low energy
GBs in this dataset having more negative segregation energies, they also
have higher solute concentrations, excepting the perfect twin at 60◦.
This is seen most clearly in the 𝑐GB line for 300 K (orange) in Fig. 8c.
This correlation is expected from the inverse relationship between
segregation energy, 𝐸Co𝑖

seg , and solute concentration, 𝑐GB, in Eq. (2), and
can be seen clearly by the paraboloid quality of the segregation energy
spectra across disorientation angles in Fig. 8b with a matching inverse
paraboloid in Fig. 8c.

As demonstrated in Fig. 8c and expected from Eq. (2), the concen-
tration of solute at the GB, 𝑐GB, is temperature dependent. Note that
egregation energies were calculated at 0 K, but that Eq. (2) expects
his to be the case. We expect that as the temperature increases, less
avorable atom sites in the bulk of the material are occupied with
ncreasing probability. This causes the concentration to approach the
ulk value of 𝑐bulk = 0.2 at.% at elevated temperatures, which is shown
learly by the decreasing concentration values at higher temperatures
n Fig. 8c. Thus the concentrations calculated here match the theory
resented in Section 2.3.

The perfect twin GB at a 60◦ twist angle about the [111] disorienta-
ion axis is an exception to most of the trends in the [111] symmetric
wist GBs discussed here. For example, it has all positive segregation
nergies, shown in Fig. 8b. This is unsurprising given the structure of
he twin boundary; its density and structure provide no easy sites for
egregation as compared with the bulk (evidenced by its low excess
olume), leading to positive segregation energy values in all cases.
he highly symmetric structure also results in a very low GB energy,
hown in Fig. 8a. The perfect twin has lower 𝑐GB values than the rest
f the [111] symmetric twist GBs at every temperature, as shown in
ig. 8c, as a result of its entirely positive segregation energy spectrum.
t is also the only GB in the Homer dataset with a 𝑐GB value below
bulk = 0.2 at.%, having a value of 𝑐GB = 0.03 at.% for 𝑇 = 300 K.

It can be seen that aCNA and CSP give similar results at 300 K
compare the 300 K solid and dotted lines in Fig. 8c). This was found
o be the case for the entire dataset; the correlation between 𝑐GB
omputed from CSP vs. aCNA GB atoms is plotted in Supplemental
igure S16. Using CSP nearly always results in a similar, but slightly
ower, 𝑐GB value since it includes more near-bulk atoms than aCNA,
ut the positive correlation means that all trends should remain the
ame. This similarity in 𝑐GB emerges despite the differences in the

istributions shown in Fig. 8(b), though it is difficult to point to specific u
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able 3
isorientation axes with the highest mean 𝑐GB values, and the number of GBs that
elong to that axis.
Disorientation axis 𝑐GB for this axis # of GBs

[443] 52.7 ± 4.6 at.% 86
[751] 51.4 ± 5.5 at.% 108
[654] 51.3 ± 7.7 at.% 20

Table 4
Disorientation axes with the lowest mean 𝑐GB values, and the number of GBs that
elong to that axis.
Disorientation axis 𝑐GB for this axis # of GBs

[100] 40.6 ± 6.7 at.% 217
[554] 41.1 ± 8.5 at.% 32
[110] 42.6 ± 10.4 at.% 352
[111] 43.0 ± 11.6 at.% 253

aspects of the distributions that lead to bigger differences in 𝑐GB based
on CSP and aCNA for some GBs than others.

Having examined the [111] symmetric twist GBs, we now turn our
attention to the 𝑐GB values for all 7272 GBs over the 5D space. 82.1%
of non-FCC GB atom sites observed in this work, as determined by CSP,
have negative segregation energies, which corresponds to segregation
being favorable. Therefore, a majority of GB sites will accommodate
a Co atom in the dilute limit. This implies that the concentration of
Co atoms in the GB, 𝑐GB, will be higher than in bulk value of 𝑐bulk =
0.2 at.%, and is evidenced by the mean concentration of all GBs in
the Homer dataset, which is 𝑐GB = 46.7 ± 7.2 at.% at 𝑇 = 300 K.
Supplemental Figure S17 shows 𝑐GB vs. GB energy for all GBs in the
Homer dataset. Supplemental Figure S18 shows 𝑐GB as a function of
disorientation angle.

The disorientation axes with the highest and lowest mean 𝑐GB values
are given in Tables 3 and 4, respectively. It is worth noting that the
low 𝑐GB disorientation axes in Table 4 have high symmetry, with the
exception of the [554] axis. However, it is also worth noting that the
mean 𝑐GB for the entire dataset lies within one standard deviation
of each of both the low and high concentration disorientation axes’
mean values given in Tables 3 and 4, aside from the [443] axis. Thus,
there is considerable overlap in the distributions. Additionally some of
the axes listed here may not be statistically significant enough to be
considered outliers, based on their small populations (e.g., the [654]
axis containing only 20 GBs). So, while they may have more extreme
𝑐GB values in general and also contain some of the GBs with outlying
ternary plot locations mentioned in Section 4.2, the actual range of 𝑐GB
values in all cases is not large and it is difficult to find meaningful
trends among the averaged values of the disorientation axes.

The effect of disorientation is shown in Supplemental Figure S20,
where the mean concentrations of all of the Homer dataset GBs at each
CSL are plotted in Rodriguez space.6 Consistent with Table 4, the [100],
[110], and [111] disorientation axis GBs have the lowest 𝑐GB values
per disorientation axis, although the [111] axis has a larger deviation.
The smooth variation of 𝑐GB in Rodriguez space is an indicator that
there may be broader global trends in 𝑐GB, but because these represent
averages of dozens of 𝑐GB values for the different boundary planes, any
functional would be complex.

The effect of boundary plane is illustrated in Fig. 9, which shows
three small subsections of the 5D GB space—the (a) [100], (b) [110],
and (c) [111] disorientation axis GBs. Shown are volumetric plots of
concentration, 𝑐GB, where the 𝑧-axis defines the disorientation angle

6 Rodriguez space is also known as Rodriguez-Frank space and is a fun-
amental zone where the CSL values of cubic-cubic disorientation GBs are
efined. It is a 3D parameterization of disorientation, and as such is often
sed to aid in visualization of 5D datasets of GBs.
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Fig. 9. Disorientation angle vs. boundary plane volumetric plots of concentration in the GB, 𝑐GB, with isosurfaces colored by different 𝑐GB values for 3 different disorientation
axes: (a) [100] (b) [110] (c) [111]. These plots are equivalent to stacking boundary plane fundamental zone plots with the same disorientation axes. The [111] symmetric twist GBs
are located along the vertical red line in plot (c), with the perfect twin located at the top, corresponding to the darkest blue contour, and the lowest 𝑐GB. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
and the x- and y-axes define a stereographic projection of the boundary
plane normal in boundary plane fundamental zones [83]. The vertices
of the plots define high symmetry boundaries; the two vertices that ter-
minate each arc are symmetric tilt boundaries about the disorientation
axis and the other vertex defines symmetric twist boundaries about the
disorientation axis. The [111] symmetric twist boundaries examined in
Fig. 8 correspond to the points along the red line in Fig. 9c.

All three plots in Fig. 9 show smooth but unpredictable variation of
the 𝑐GB from areas with high 𝑐GB to other areas of low 𝑐GB. We refer
to this as a complex or rugged landscape [84]. This means that while
𝑐GB varies smoothly, there are many irregular local extrema and a lack
of symmetry or global trends. Of the three axes shown in Fig. 9, the
[111] disorientation axis in (c) exhibits the largest range of 𝑐GB. This is
perhaps unsurprising because it has the low energy twin GB at the top
of the red line, and Table 4 shows that it has a large standard deviation
of 11.6 at.%. Additionally, as noted above, GBs from the three axes in
Fig. 9 make up many of the outliers in the ternary plot in Fig. 7b,
which may be related to their low mean 𝑐GB values (noted in Table 4)
as compared to the global mean concentration of 𝑐GB = 46.7 at.%.
However, as stated earlier, not every GB from these axes will be an
outlier.

While there are not broad global trends that we can extract from
these few subspaces analyzed, these plots illustrate the effects of disori-
entation and boundary plane on changes to segregation energy spectra
in GBs. The segregation energy spectra or 𝑐GB values computed in this
work could be used to develop a model for segregation across the 5D
space (e.g., using an expansion [85] or an interpolation function [86]).
Such a model could subsequently be used to examine the effects of
texture or estimate segregation for a GB of arbitrary character.

4.4. Overall trends in dataset

The broad effect of GB crystallographic character on GB segregation
trends has to this point been unknown and was recently listed as a
future perspective worth considering [48]. The plots of 𝑐GB in Fig. 9
and Supplemental Figure S19 show that segregation varies smoothly
throughout the 5D crystallographic space. Unfortunately, the landscape
produced in this work is rugged and beyond the averaged trends
observed in the Rodriguez plot in Supplemental Figure S20, there is no
obvious global trend of segregation as a function of 5D crystallographic
character. This is futher illustrated in Fig. 10, where the scatter in
the data makes it hard to observe any obvious trend between 𝑐GB and
disorientation angle.
11 
Fig. 10. Disorientation angle vs. concentration in the GB, 𝑐GB at 300 K using CSP for
GB atom selection. Bin sizes are 0.50◦ and 0.72 at.%.

This stands in contrast to a variety of experimental reports that show
trends of GB enrichment as a function of misorientation angle [13,
43,63,87]. While these various reports do consistently show different
results for low vs. high angle GBs, the trends at high angles are highly
variable between the different reports, which could be attributed to the
comparison of different materials or different sets of GB types. Finally,
most involve small samplings of GBs, likely due to the difficulty in
experimental measurement of GB enrichment in a large population of
GBs.

It is not clear at this point whether the various sources of infor-
mation are in conflict or in support of the results presented here. It is
certain that at least some of the differences between the reports should
be attributed to different materials, structures, and their segregation
tendencies. But the variation due to GB type could be a sign that there
are local but not global trends in GB concentration as indicated by the
present work. Additional experiments will be required to verify whether
their limited data is representative of broader global trends or whether
they have extracted local trends.
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Fig. 11. Concentration of solute at the GB, 𝑐GB, as a function of GB excess volume
and GB energy. The following are projected onto their corresponding planes: 𝑐GB vs.
GB energy (green), 𝑐GB vs. GB excess volume (orange), and GB excess volume vs. GB
energy (blue). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 5
Estimate, standard error (SE), and 𝑝-value of variables of the following linear model
used to predict 𝑐GB in at.%: 𝑐GB = 𝑥0 + 𝑥1 ⋅ 𝛾 + 𝑥2 ⋅ 𝑉exc + 𝑥3 ⋅ 𝜃dis.

Variable Estimate SE 𝑝−value

𝑥0 7.08 0.496 1.33×10−45
𝑥1 0.175 0.00154 0
𝑥2 −142 1.63 0
𝑥3 0.00504 0.00410 0.220

To determine whether we have missed a possible global low vs. high
angle GB characterization often reported in the literature, we fit 𝑐GB as
a function of disorientation angle for GBs with angles less than 15◦.
These fits are provided in Supplemental Figure S18 where it can be
seen that 𝑅2 values for the low angle fits are all less than 0.3. This is
insufficient to verify a global low vs. high angle trend, so once again, it
may be that there are local but not global trends even in this simplified
characterization. The slightly better fit in the fixed width GB atom
selection once again highlights the need to further understand the effect
of GB atom selection. More importantly, more low angle data would be
required to definitively say that the computational data does or does
not match the experimental observations; only 6 unique misorientations
over 250 boundary planes exist in the Al dataset.

However, given that 𝑐GB and the segregation energy spectrum do
appear to correlate with GB energy and GB excess volume at the local
scale, as illustrated in this work by the [111] symmetric twist GBs in
Fig. 8 and by others [27,57,65,87–89], we examine these correlations
further. In addition, segregation energies appear to be correlated with
GB energy across the whole dataset as illustrated in Fig. 6. This is
supported by observations from Huber et al. in their exploration of 𝛴5
GBs, who found that segregation energy per site depended on excess
volume and coordination number at the site.

Given these apparent correlations, we created a simple linear model
to predict 𝑐GB. We include disorientation angle to search for possible
crystallographic dependence as well as two variables known to cor-
relate with segregation, GB energy and GB excess volume. A plot of
these variables, excluding disorientation angle, is shown in Fig. 11.
The linear model is given in Table 5. The model has an 𝑅2 value of
12 
0.642 and a root mean squared error (RMSE) value of 0.043 at.%. In
contrast, a linear model of 𝑐GB as a function of GB energy alone, shown
in Supplemental Figure S7, has an 𝑅2 value of 0.271. A plot of 𝑐GB vs.
disorientation angle is shown in Supplemental Figure S18 to confirm
the lack of a global correlation with 𝜃dis found in the model; the 𝑝-value
on the coefficient is 0.217.

Fig. 11 and the linear model given in Table 5 confirm the previously
shown dependence of segregation on GB energy, 𝛾, and GB excess
volume, 𝑉exc, for GBs sampled over the entire 5D space. However, the
linear model for 𝑐GB has almost no dependence on the disorientation
angle, 𝜃dis.

This lack of a relationship with the disorientation angle as well as
the rugged landscape in 5D space shown in Fig. 9 make it difficult
to understand how to optimize GB segregation energy characteristics
through texture control or GB engineering. It may be that sufficient
advantage can be obtained through traditional GB engineering efforts to
obtain large populations of low-angle GBs or 𝛴3 and other special CSL
GBs to obtain enhanced properties, as in [43,54,87]. GB engineering
for segregation through the use of other types of boundaries remains a
challenge to be solved.

5. Conclusions

In this work, we examined grain boundary segregation energy spec-
tra of Co in 7272 Al GBs that comprehensively sample the 5D space
of crystallographic character. This included calculating segregation
energies for more than 70 million possible sites.

Verification of the dataset involved determining how to identify
bulk vs. GB atoms. While aCNA is often used for bulk determination
in GBs, the number of non-negligible segregation energies that were
excluded by aCNA categorization caused us to consider CSP as an
alternative, with a cutoff of 0.1 for bulk determination. The differences
between these two methods are illustrated in Figs. 1 and 2 and dis-
cussed further in Supplemental Section S1. The resulting segregation
energy spectra from both methods were also compared in Figs. 4,
5 and 8b. It was determined that they give similar answers despite
the reduced number of atoms included by aCNA, as illustrated in a
comparison of 𝑐GB values calculated using both CSP and aCNA shown
in Supplemental Figure S16. However, the small differences point to a
need for the community to address GB atom selection when examining
segregation energy spectra and consider possible alternatives such as
a fixed width approach, which best matches the low disorientation
angle 𝑐GB expectations (cf. Supplemental Figure S18). Such efforts by
the community may help determine the optimal approach to extracting
segregation energy distributions from both bicrystal and polcrystalline
simulations. Verification also involved removing invalid segregation
energy calculations that did not converge to 0 eV at large distances
from the GB, since they do not match the expected behavior [62,63],
and GBs with unreasonably low segregation energies. The complete list
of GBs excluded from analysis in this work is given in Supplemental
Table S3.

Validation involved comparing the computed GB segregation en-
ergies to similar bicrystal and polycrystal computational studies. In
Fig. 4 it was shown that a subset of the data produced in this work
is similar to the work of Huber et al. in [31]. The aggregated spectrum
of segregation energies in the Homer bicrystal GB dataset is also
similar to the segregation energy spectrum in polycrystals obtained by
Wagih et al. in [27], as shown in Fig. 5 and Table 1. Both validation
comparisons are favorable, but some minor differences between the
polycrystal and bicrystal spectra raise a number of questions, posed
in Section 3.2.2, that are worth resolving and that could impact the
quality of an aggregate segregation energy spectrum.

Several insights arose from different methods of analysis. Fig. 6
shows that as GB energy increases, Co segregation in Al GBs becomes
more favorable. This is supported by the increase of 𝑐GB with GB energy

shown in Fig. 7b, Fig. 11, and Supplemental Figure S17. Additionally,



L.H. Serafin et al.

t
f
c
o
a
‘
w

Acta Materialia 283 (2025) 120448 
all of the GBs have higher 𝑐GB than 𝑐bulk , except the [111] symmetric
wist perfect twin GB. Fig. 7b shows that most GBs have a preference
or segregation, evidenced by their proximity to the ‘‘all segregating’’
orner of the plot. However, there are some interesting GBs that are
utliers, many of which have [100], [110], and [111] disorientation
xes. The most extreme outlier is the [111] twin GB that is located at
‘all anti-segregating.’’ In addition, the temperature dependence of 𝑐GB
as demonstrated in Fig. 8c, which shows that 𝑐GB drops dramatically

at higher temperatures.
In general, it was found that 𝑐GB has smooth variation across the 5D

space of crystallographic character (see Fig. 9 and Supplemental Figure
S19). Additional examination confirmed that 𝑐GB can be described in
a linear model with GB energy and GB excess volume (see Fig. 11
and Table 5), which finds no correlation with disorientation angle (see
Supplemental Figure S18) across the 5D space. 𝑐GB does not have an
obvious functional form in 5D crystallographic space, which is shown
by the rugged landscapes in Fig. 9 and the lack of obvious trends in
Supplemental Figure S19. This emergence of local but not global trends
may or may not align with the limited experimental datasets available
in the literature, as discussed above; additional data will be required to
verify such conclusions.
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