
Computational Materials Science 136 (2017) 144–149
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci
Generating derivative superstructures for systems with high
configurational freedom
http://dx.doi.org/10.1016/j.commatsci.2017.04.015
0927-0256/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: wiley.s.morgan@gmail.com (W.S. Morgan).
Wiley S. Morgan a,⇑, Gus L.W. Hart a, Rodney W. Forcade b

aDepartment of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
bDepartment of Mathematics, Brigham Young University, Provo, UT 84602, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 5 January 2017
Received in revised form 11 April 2017
Accepted 16 April 2017

Keywords:
Enumeration
Derivative superstructures
Displacement patterns
Modeling alloys requires the exploration of all possible configurations of atoms. Additionally, modeling
the thermal properties of materials requires knowledge of the possible ways of displacing the atoms.
One solution to finding all symmetrically unique configurations and displacements is to generate the
complete list of possible configurations and remove those that are symmetrically equivalent. This
approach, however, suffers from a combinatorial explosion when the supercell size is large, when there
are more than two atom types, or when there are many displaced atoms. This problem persists even
when there are only a relatively small number of unique arrangements that survive the elimination pro-
cess. Here, we extend an existing algorithm to include the extra configurational degrees of freedom from
the inclusion of displacement directions. The algorithm uses group theory and a tree-like data structure
to eliminate large classes of configurations, avoiding the typical combinatoric explosion. With this
approach we can now enumerate previously inaccessible cases, including atomic displacements.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

In computational material science, one frequently needs to list
the ‘‘derivative superstructures” [1] of a given lattice. A derivative
superstructure is a structure with lattice vectors that are multiples
of a ‘‘parent lattice” and have atomic basis vectors constructed
from the lattice points of the parent lattice. For example, many
phases in metal alloys are merely ‘‘superstructures” of fcc, bcc, or
hcp lattices (L10, L12, B2, D019, etc.). When modeling alloys, it is
necessary to explore all possible configurations and concentrations
of atoms within these superstructures. When determining if a
material is thermodynamically stable, the energies of the unique
arrangements are compared to determine which has the lowest
energy.

Derivative superstructures are found using combinatoric
searches [2–8], comparing every possible combination of atoms
to determine which are unique. However, these searches can be
computationally expensive for systems with high configurational
freedom and are sometimes impractical due to the combinatoric
explosion of possible arrangements.

Other problems impaired by the inefficiency of current enumer-
ation methods include modeling materials that have disorder in
their structures, such as site-disordered solids [9] or that include
atomic displacements as a degree of freedom [10–12]. There are
numerous techniques available for modeling these systems includ-
ing cluster expansion (CE) [13] and a recently developed ‘‘small set
of ordered structures” (SSOS) method [14]. However, the accuracy
of these methods is still linked to the number of unique configura-
tions being modeled. In other words, if the model is trained on a
small set of configurations then it will not be able to make accurate
predictions. Increasing the number of configurations used to train
the models can improve their predictive power. Increasing the
number of structures being used requires a more efficient enumer-
ation technique than those currently available.

Leveraging the basic concepts of the algorithm presented in Ref.
[6], we altered the algorithm to have more favorable scaling in
multinary cases. The basic idea is to imagine the enumeration as
a tree search and employ two new ideas: (1) ‘‘partial colorings”
and (2) stabilizer subgroups. Section 3 illustrates the algorithm
with a concrete example.

The concept of partial colorings is to skip entire branches of the
tree that are symmetrically equivalent to previously visited
branches. A partial coloring is an intermediate level in the tree
(see Fig. 1) where configurations are not yet completely specified.
It frequently happens that symmetric redundancy can be identified
at an early, ‘‘partially colored” stage, avoiding the need to descend
further down the tree.
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Fig. 1. The empty lattice and 8 of the 36 configurations with only red atoms are shown for the example discussed in Section 3. Above each partial coloring is a vector that
indicates its location in the tree, i.e. ðxr ; xy; xpÞ, where the xis are integers that indicate which arrangement of that color is on the lattice and a � means that no atoms of that
color have been placed yet. Below each configuration is either the label of a symmetrically equivalent configuration, along with the group operation that makes them
equivalent, or the letters A and B. A and B are the branches that are built from the 1-partial colorings that are unique and are displayed in Fig. 2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Stabilizer subgroups [15] further increase the efficiency of the
new algorithm. The stabilizer subgroup at each stage is the set of
symmetries which leave the current partial coloring unchanged.
As we add more colors, and eliminate symmetrically equivalent
colorings, we need not consider colorings which would be equiva-
lent by non-stabilizer symmetries, since those colorings have
already been implicitly eliminated. Note that the stabilizer sub-
group will get smaller as we proceed down the search tree, thus
simplifying and speeding our search.
2. Supercell selection and the symmetry group

The first step in enumerating derivative superstructures is the
enumeration of unique supercells. This step was solved in Ref.
[8], but due to its importance to the algorithm we provide a brief
overview.

The supercells, of size n, are found by constructing all Hermite
Normal Form (HNF) matrices whose determinant is n. An HNF
matrix is an integer matrix with the following form and relations:

a 0 0
b c 0
d e f

0
B@

1
CA; 0 6 b < c; 0 6 d < f ; e < f ð1Þ

where acf ¼ n. The HNFs determine all possible the supercells for
the system. For example, consider a 9-atom cell, then n ¼ 9 and a,
c; f are limited to permutations of (1,3,3) and (1,1,9). Then follow-
ing the rules for the values of b; d, and e, every HNF for this system
can be constructed. These HNFs represent all the possible supercells
of size n of the selected lattice. Some of these are equivalent by
symmetry, so the symmetry group of the parent lattice is used to
eliminate any duplicates.

Next, we convert the symmetries of the lattice to a list of per-
mutations of atomic sites. There is a one-to-one mapping between
the symmetries of the lattice and atomic site permutations, i.e., the
groups are isomorphic. The mapping from the symmetry opera-
tions to the permutation group is accomplished using the quotient
group G ¼ L=L0, where L is the lattice, constructed from the unit
cell, and L0 is the superlattice, constructed from the supercell. The
quotient group G is found directly from the Smith Normal Form
(SNF) matrices, which can be constructed from the HNFs via a stan-
dard algorithm using integer row and column operations. Thus
S ¼ UHV where U and V are integer matrices with determinant
�1 and S is the diagonal SNF matrix, where each positive integer
diagonal entry divides the next one down. The group, G, is then
G ¼ Zs1 � Zs2 � Zs3 , where si is ith diagonal of the SNF and Zsi repre-
sents the cyclic group of order n.

Once the supercells have been found and their symmetry
groups have been converted to the isomorphic permutation group,
the algorithm can begin finding the unique arrangements of atoms
within each supercell in a tree search framework. This is accom-
plished by treating each supercell with its symmetry group as a
separate enumeration problem. The results of the enumeration
across all supercells are then combined to produce the full
enumeration.
3. Tree search

Once a supercell has been selected, the remainder of the enu-
meration algorithm resembles a tree search. It is often possible
to skip the descendents of a node because we know all its ‘‘leaves”
will represent duplicate structures. These nodes represent incom-
plete configurations, or partial colorings (see Figs. 1 and 2). The par-
tial colorings are identified using a ‘‘location vector” — a list of
indices that specify the node in the tree. Once a partial coloring
is constructed, the stabilizer subgroup for that partial coloring is
found. The stabilizer subgroup allows for the comparison of
branches within the tree in a manner that minimizes the number
of group operations used. These tools (partial colorings and the sta-
bilizer subgroup) are used to ‘‘prune” branches of the tree as they
are being constructed, eliminating large classes of arrangements at
once (Fig. 3).

We will use a 2D example of a 9-atom cell to illustrate the algo-
rithm. The lattice will be populated with the following atomic spe-
cies; 2 red atoms, 3 yellow atoms, and 4 purple atoms. A subset of
the possible arrangements of this system is shown in Fig. 2. The
concepts illustrated with this 2D example are equally applicable
in 3D.
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Fig. 2. Here the A and B branches of the tree from Fig. 1 are shown. Each branch starts with the initial 1-partial coloring the branch is built from (ð0; �; �Þ and ð3; �; �Þ
respectively). The branches then show a selection of the 2-partial colorings for that branch, and the unique full colorings that are found. As in Fig. 1 the vectors that indicate
the configurations location in the tree are displayed above the configurations and the symmetrically equivalent labels appears beneath them. In this figure the actions that
make the configurations have been excluded due to their complexity. For example, The configuration labeled ð0;5; �Þ is equivalent to the ð0;1; �Þ configuration by a rotation
about the vertical followed by a translation to the left. In the B branch configuration ð3;19;0Þ is outlined for reference because it is used as an example later in the text. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The configuration ð3;0; �Þ, shown on the left, is acted on by a reflection about
the diagonal resulting in configuration ð3;6; �Þ, shown on the right. Because the
symmetry group operation is a stabilizer for the configuration ð3; �; �Þ the red atoms
were not affected. A stabilizer is a group element that leaves the set invariant. The
yellow atoms, however, were mapped to a different configuration. This means we
can use just the stabilizer subgroup for the ð3; �; �Þ configuration to compare all the
2-partial colorings of the form ð3; xy; �Þ, where (0 6 xy 6 Cy � 1), because any other
group operation would map us to a different branch of the tree. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.1. Partial colorings

When searching for all unique configurations, it is useful to
know, a priori, how many configurations are expected. A recently
developed numerical algorithm for the Pólya enumeration theorem
[16–18] allows one to quickly determine the memory require-
ments of storing the unique arrangements. For the 9 atom system
considered here, the Pólya algorithm finds 24 unique configura-
tions (from the 1260 combinatorially distinct configurations).
The algorithm places atomic species on the lattice from smallest
concentration to the largest. In this case, the red atoms have the
lowest concentration and are placed in the first two sites of the cell
creating the first 1-partial coloring (a partial coloring is a configu-
ration with only a subset of the atoms decorating the lattice). This
is shown in the leftmost configuration, labeled ð0; �; �Þ, in the sec-
ond row of Fig. 1. The general procedure is to apply the symmetry
group to each partial coloring in order to make comparisons
between partial colorings and determine if they are symmetrically
equivalent. For example, in Fig. 1, the configuration labeled ð1; �; �Þ
is equivalent to configuration ð0; �; �Þ by a translation. At the
ð0; �; �Þ stage we only have one partial coloring so it is unique
and no comparisons need to be made, however the symmetry
group is still applied to find the stabilizer subgroup described in
Section 3.2.

Comparisons between configurations are made by using a hash
function. The hash function is a one-to-one mapping between the
atomic configurations and the location vector. In our case, the con-
figurations are listed within the hash table in the order they are
created. The hash function then maps the configuration to a vector
of integers with an entry for each species (color) in the system.

The hash function uses the principles of combinatorics to
uniquely identify each partial coloring using an integer vector.
Its construction starts by determining the number of possible
ways to arrange the colors on the lattice. The number of possible
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configurations can be found using the multinomial coefficient,
which is equivalent to the product of binomial coefficients for each
individual color:

C ¼ n

a1; a2; . . . ; ak

� �
¼ C1C2 . . .Ck ¼

n

a1

� �
n� a1
a2

� �

. . .
n� a1 � a2 � . . .� ak

ak

� �
;

ð2Þ

where n is the number of sites in the unit cell and a1; a2; . . . ; ak are
the number of atoms of species i such that

P
iai ¼ n. The binomials

determine the number of ways to place the atoms of each color
within the lattice once the previous colors have been placed. By
assigning each partial coloring an integer, xi, from 0 to Ci � 1, where
i is the color, we can build a vector that identifies the location,
ðx1; x2; . . . ; xkÞ, of the configuration within the tree. For example,

there are Cr ¼ 9
2

� �
¼ 36 ways to place the red atoms (r) on the

empty lattice. After the red atoms are placed then there remain

Cy ¼ 7
3

� �
¼ 35 ways to place the yellow atoms (y) on the remain-

ing lattice sites. This leaves Cp ¼ 4
4

� �
¼ 1 way to place the purple

atoms (p) on the lattice. Within Figs. 1 and 2, the vector locations
have the form ðxr ; xy; xpÞ and if the color has not been assigned yet
then the as-yet-unspecified xis are indicated by dots.

The hash function maps a configuration to a location vector as
follows: the xi’s are constructed by considering each color sepa-
rately and building a binary string of the color and the remaining
empty lattice sites, where the color is a 1 and the empty site is a
0 within the string. From the binary string, we can then use a series
of binomial coefficients to find the xi’s. The binomial coefficients
are found by taking each 0 in the string that has 1’s to the right

of it and computing p
q� 1

� �
, where p is the number of digits to

the right and q is the number of 1’s to the right of the 0. Summing
the binomials for qualifying zeros produces a number that tells us
how many configurations came before the current one.

As an example, consider configuration (3,19,0) of Fig. 2B. The
construction begins with the red atoms represented as the follow-
ing binary string (1,0,0,0,1,0,0,0,0), where every atom that is not
red has been represented by a 0 and the red atoms by a 1. This
string has 3 zeros that have a single 1 to their right, the first zero
has 7 digits to its right, the second has 6 atoms to its right and
the third has 5 atoms to its right. The resultant sum of binomials

is xr ¼ 7
0

� �
þ 6

0

� �
þ 5

0

� �
¼ 1þ 1þ 1 ¼ 3. This result is the first

entry in our location vector.
The second entry in the location vector is constructed for the

yellow atoms. The bit string representation of the yellow atoms
is (0,1,0,1,1,0,0), there are only 7 digits because the 2 red atoms

have already been placed, so xy ¼ 6
2

� �
þ 4

1

� �
¼ 15þ 4 ¼ 19.

The last entry in the location vector is built for the purple atoms
which have the bit string (1,1,1,1), so xp ¼ 0. The location vector
is complete once all colors have been included.

The location vectors allow us to determine if a configuration is
unique by checking if an element of the symmetry group maps the
configuration to another configuration with a smaller location vec-
tor. A symmetry operation maps a configuration’s location to a sec-
ond, equivalent location. Uniqueness is determined by comparing
the original and mapped locations for the configuration; if the
mapped configuration has already been enumerated, that is, if
xoriginal > xmapped, then the configuration is not unique because it is
equivalent to one we have already visited. For example, configura-
tion ð2; �; �Þ shown in Fig. 1 can be turned into configuration
ð0; �; �Þ by a 180 degree rotation about the diagonal. Since ð2; �; �Þ
and ð0; �; �Þ are equivalent we conclude that ð2; �; �Þ is not unique
because 2 > 0. In summary, if any element of the symmetry group
makes the location vector ‘‘smaller”, then the corresponding con-
figuration has already been visited.
3.2. The stabilizer subgroup

The entire symmetry group does not need to be applied to a
partial coloring; all that is needed is the stabilizer subgroup of
the parent partial coloring (one level up the tree). The stabilizer
subgroup is found when the symmetry group is applied to the par-
tial coloring one level higher up the tree, so finding the stabilizer
subgroup costs nothing computationally. As an example of an ele-
ment of the stabilizer subgroup, consider the cell ð3; �; �Þ, displayed
in Fig. 1, and reflect it about the diagonal; the red atoms are unaf-
fected. This means that a reflection about the diagonal is a member
of the stabilizer subgroup for the 1-partial coloring ð3; �; �Þ. In gen-
eral, only a small subset of the symmetry group will be in the sta-
bilizer subgroup for any partial coloring.

The stabilizer subgroup leaves the desired n-partial coloring
unchanged, where n is the depth in the tree. When another color
is added (making an ðnþ 1Þ-partial coloring), the stabilizer sub-
group for the n-partial coloring becomes the only group operations
that can be applied without affecting the n-partial coloring. In
other words, if we were to use any other group elements we would
be comparing configurations that we already know are equivalent
on the n-partial coloring level.

Once a unique n-partial coloring and its stabilizer subgroup
have been found, the algorithm proceeds down the branch to the
ðnþ 1Þ-partial colorings (see Fig. 2). To check the uniqueness of
the ðnþ 1Þ-partial colorings, the stabilizer subgroup from the n-
partial colorings are used. (At this point, the stabilizer subgroup
for the ðnþ 1Þ-partial colorings are stored.) When a unique config-
uration is found on the ðnþ 1Þ level, another color is added, making
the ðnþ 2Þ-partial colorings, and the process is repeated until the
final level of the tree is reached.

The algorithm proceeds down a branch of the tree until a unique
full configuration is found, such as (0,0,0) of Fig. 2. When the full
configuration is found, the algorithm backs up one level and consid-
ers the next partial coloring.When no partial colorings are available
on a level, the algorithm backs up until it finds a level with untested
partial colorings. In this manner, the entire tree is explored but only
sections with unique configurations are explored in detail.

For an example of the complete algorithm, consider Figs. 1 and
2. The algorithm starts at ð�; �; �Þ then builds the 1-partial coloring
at ð0; �; �Þ, which is unique by virtue of being the first partial color-
ing considered on this level, and records its stabilizer subgroup.
The yellow atoms are then added to the configuration to build
the 2-partial coloring at ð0;0; �Þ, of Fig. 2 A, which is also unique,
and records its stabilizer subgroup. Next, it places the purple atoms
to get the configuration at (0,0,0); this configuration is saved, then
the algorithm backs up to the 2-partial coloring level to consider
the configuration ð0;1; �Þ and find its stabilizer subgroup.

Once this process has been repeated for all 34 partial colorings
in the vector ð0; xy; �Þ (0 6 xy 6 34 ¼ Cy), the algorithm retreats to
the 1-partial coloring level shown in the second row of Fig. 1 and
finds that ð1; �; �Þ and ð2; �; �Þ are equivalent to ð0; �; �Þ. It then
begins to build the ð3; �; �Þ branch (Fig. 2 B) in the same manner
as the ð0; �; �Þ branch. In this example, only 106 nodes of the
1296 are visited.

Since there are only two unique 1-partial colorings for this
system the algorithm is complete once both branches that origi-
nate from these 1-partial colorings have been explored. In the
end, 24 unique configurations are found (shown in Fig. 2A and
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B), in agreement with the number determined by the Pòlya enu-
meration algorithm.
3.3. Extension to displacement degrees of freedom

Having established the algorithm, we will now address its
extension to include displacement directions. These enumerations
are more difficult because including displacement directions
changes the action of the group. Displacement directions simply
indicate the direction that an atom could be displaced off the lat-
tice. The enumeration of structures that include displacement
directions can be used to build databases [19] of possible struc-
tures with displacements included.

Our algorithm changes only slightly if displacement directions
are included in the enumeration. First, the atoms that will be dis-
placed are treated as a different atomic species so that each dis-
placed atom’s unique locations can be determined. (See Fig. 4 for
an example where yellow displaced atoms are replaced with the
red atoms from the example system used above.) Once the arrows
have been replaced by atomic species, the algorithm proceeds as
normal until a full configuration is found. The algorithm then
restores the arrows and uses the stabilizer subgroup of the full con-
figuration to check for equivalent arrow configurations.

In order to determine if the combined arrow and color configu-
ration is unique, each group element has to be paired with a second
set of permutations that determine how the symmetry operation
affects the arrows. The effect on the arrows is represented as a per-
mutation of the numbers 0 to d� 1, where each number represents
a different displacement direction up to the d directions being con-
sidered. For example, if we consider the system in Fig. 4, we have
two atoms being displaced along one of the 6 cardinal directions,
then any arrow could have values of between 0 and 5 where each
integer has an associated direction; up = 0, right = 1, down = 2,
left = 3, into the page = 4, and out of the page = 5. The initial arrow
vector, shown in the figure, is (up,up) and is represented as (0,0).

The comparison of the rotated and unrotated arrows is achieved
using a hash function different from the one used to hash the color
configurations. This hash function takes a vector of arrow direc-
tions ða0; a1; a2; . . . ; akÞ and converts it to a unique integer label
(where ai is an integer from 0 to d� 1 indicating the direction of
the ith arrow and kþ 1 is the number of arrows). The integer label
is simply the mixed radix number:

x ¼
Xk

i¼0

aid
i
: ð3Þ

With the unique integer labels for each arrow arrangement, we can
make comparisons between symmetry operations. As was the case
for the configurations, if the effect of a symmetry operation results
Fig. 4. To include displacement directions to the algorithm we represent the atoms
to be displaced by a unique color and then convert them back once a unique
configuration is found. In this figure two displaced yellow atoms are represented by
red atoms until the previous portion of the algorithm is complete, then they are
replaced by arrows again for the arrow enumeration. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
in a relationship of xold > xnew, then the arrow configuration is not
unique and can be skipped.

The stabilizer subgroup for the unique color configuration are
used to map the arrows to new directions and the hash function
is used to compare the original and mapped arrows. After an arrow
arrangement is checked, the algorithm then increases the magni-
tude of the last ak in the vector by 1 and checks it for uniqueness
with the stabilizer subgroup. If increasing the magnitude of ak
would cause it to be greater than the value of d� 1 then ak
becomes 0 again and ak�1 is increased by 1. This process is repeated
until all the entries in the arrow vector are equal to d� 1.

For example, the initial arrow vector for the system shown in
Fig. 4 is (up,up) and is represented as (0,0). It is found to be unique
since it is the first arrangement. For the next arrangement the
arrow on the right is rotated to point to the right creating the
arrangement represented as (0,1). This arrangement is also
checked to see if it is unique. The right most arrow continues to
be rotated every time a new arrangement is constructed until it
is pointing out of the page and the arrangement represented as
(0,5) has been considered. At this point all possible arrangements
that have the first arrow pointing up have been considered, so
the second arrow is set to point up and first arrow is rotated to
make the arrangement (1,0). We then go back to increasing the last
entry in the vector to create new arrangements in order to deter-
mine if any of them are unique until (1,5) is reached. The process
is repeated until all possible the arrangements, i.e., all 2-tuples of
0; 1; . . . ; d� 1, have been considered. Once all the vectors have
been considered, the algorithm goes back up the tree to find the
next unique configuration of colors.

In this manner, discrete displacement directions can be added to
the configurations. In this example, adding twoarrows to the system
increases the number of possible arrangements to 45,360 (the num-
ber of possible arrangements for the atoms alone is 1260). However,
the resultant number of unique arrangements is only 663.
4. Algorithm scaling

Our new algorithm is much more efficient because it does not
compare all possible configurations of atoms to determine which
are unique. To demonstrate this improvement, we explored a typ-
ical use case for the algorithm by finding all unique configurations
of atoms on an fcc lattice. We considered ternary and quaternary
Fig. 5. The scaling of the new and previous algorithm for fcc ternary and quaternary
systems in which the atomic species were of equal concentration. The ternary
system was enumerated for cell sizes of 3–21 atoms and the quaternary system for
cell sizes of 4–16 atoms.
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systems in which all atoms were of equal concentrations. For the
ternary system we explored cell sizes from 3 to 21 and for the qua-
ternary system we considered cell sizes from 4 to 16. As can be
seen in Fig. 5, the new algorithm is significantly faster (it scales
better); for systems with approximately 20 atoms, the new algo-
rithm is two orders of magnitude faster.
5. Conclusion

Our previous algorithms [6–8] explored configuration space by
comparing all possible configurations of the atoms to eliminate
those that were symmetrically equivalent. Our new algorithm uses
a tree search and skips entire branches in the tree by employing
partial colorings. Additionally, the stabilizer subgroups of the par-
tial colorings increases the efficiency of comparing different config-
urations to determine which are unique. The new algorithm can be
applied to cases where the previous algorithms failed because it
handles cases with high configurational freedom more efficiently.
This allowed us to extend it to include displacement directions.

With this new algorithm, it is now possible to find the unique
arrangements of systems with higher configurational freedom.
The systems now accessible include k-nary alloys, k P 3, and
structures with displacement directions. This is accomplished by
using an approach which closely resembles a tree search, but in
which large classes of configurations are eliminated all at once.
In this manner, we are able to partially avoid the combinatoric
explosion which impedes the performance of the previous
algorithms.

This algorithm has been implemented in the enumlib package
and is available for public use at https://github.com/msg-byu/
enumlib under the MIT License.
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