
Numerical Algorithm for Pólya Enumeration Theorem

CONRAD W. ROSENBROCK, WILEY S. MORGAN, and GUS L. W. HART,
Brigham Young University
STEFANO CURTAROLO, Duke University
RODNEY W. FORCADE, Brigham Young University

Although the Pólya enumeration theorem has been used extensively for decades, an optimized, purely
numerical algorithm for calculating its coefficients is not readily available. We present such an algorithm
for finding the number of unique colorings of a finite set under the action of a finite group.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics

General Terms: Combinatorial Algorithms, Counting Problems

Additional Key Words and Phrases: Pólya enumeration theorem, expansion coefficient, product of
polynomials

ACM Reference Format:
Conrad W. Rosenbrock, Wiley S. Morgan, Gus L. W. Hart, Stefano Curtarolo, and Rodney W. Forcade. 2016.
Numerical algorithm for pólya enumeration theorem. J. Exp. Algorithmics 21, 1, Article 1.11 (August 2016),
17 pages.
DOI: http://dx.doi.org/10.1145/2955094

1. INTRODUCTION

A circle partitioned into 4 equal sectors can be colored 16 different ways using two
colors, 24 = 16, as shown in Figure 1. But only 6 of these colorings are symmetrically
distinct, several others being equivalent (under rotations and reflections) as shown by
the arrows in the figure. The Pólya enumeration theorem provides a way to determine
how many symmetrically distinct colorings there are with, for example, all sectors red
(only one, as shown in the figure), one red sector and three green (again, only one), or
the number with two red sectors and two green sectors (two, as shown in the figure).
Borrowing a word from physics and chemistry, we refer to the partition of red and
green sectors as the stoichiometry. For example, a coloring with 1 red sector and 3
green sectors has a stoichiometry of 1:3.

The Pólya theorem [Pólya 1937; Pólya and Read 1987] produces a polynomial (gen-
erating function), shown in the figure, whose coefficients answer the question of how
many distinct colorings there are for each stoichiometry (each partition of the colors).
For example, the 2r2g2 term in the polynomial indicates that there are two distinct
ways to color the circle with 2:2 stoichiometry (). For all other stoichiometries (4:0,

This work was supported under Grant No. ONR (MURI N00014-13-1-0635).
Authors’ addresses: C. W. Rosenbrock, W. S. Morgan, and G. L. W. Hart, Department of Physics and As-
tronomy, 84602, Brigham Young University; S. Curtarolo, Materials Science, Electrical Engineering, Physics
and Chemistry, 27708, Duke University; R. W. Forcade, Department of Mathematics, 84602, Brigham Young
University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-6654/2016/08-ART1.11 $15.00
DOI: http://dx.doi.org/10.1145/2955094

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

http://dx.doi.org/10.1145/2955094
http://dx.doi.org/10.1145/2955094

1.11:2 C. W. Rosenbrock et al.

Fig. 1. Top row: All possible two-color colorings of a circle divided into four equal sectors (left side of figure).
Bottom row: All symmetrically distinct binary colorings of the circle. Arrows indicate combinatorically
distinct colorings that are equivalent by symmetry.

0:4, 1:3, and 3:1), the polynomial coefficients are all 1, indicating that for each of these
cases there is only one distinct coloring, as is obvious from the figure.

A common problem in many fields involves enumerating1 the symmetrically distinct
colorings of a finite set, similar to the toy problem of Figure 1. The Pólya theorem
has shown its wide range of applications in a variety of contexts. Classically, it was
applied to counting chemical isomers [Robinson et al. 1976; Kennedy et al. 1964; Pólya
1937] and graphs [Harary 1955]. Recent examples include confirming enumerations
of molecules in bioinformatics and chemoinformatics [Deng and Qian 2014; Ghorbani
and Songhori 2014]; unlabeled, uniform hypergraphs in discrete mathematics [Qian
2014]; analysis of tone rows in musical composition [Lackner et al. 2015]; commuta-
tive binary models of Boolean functions in computer science [Genitrini et al. 2015];
generating functions for single-trace-operators in high-energy physics [McGrane et al.
2015]; investigating the role of nonlocality in quantum many-body systems [Tura et al.
2015]; and photosensitizers in photosynthesis research [Taniguchi et al. 2014].

In computational materials science, chemistry, and related subfields such as compu-
tational drug discovery, combinatorial searches are becoming increasingly important,
especially in high-throughput studies [Curtarolo et al. 2013]. As computational meth-
ods gain a larger market share in materials and drug discovery, algorithms such as
the one presented in this article are important as they provide validation support to
complex enumeration codes. Pólya’s theorem is the only way to independently confirm
that an enumeration algorithm has performed correctly. The present algorithm has
been useful in checking a new algorithm extending the work in Hart and Forcade
[2008, 2009] and Hart et al. [2012], and Pólya’s theorem was recently used in a similar
crystal enumeration algorithm [Mustapha et al. 2013] that has been incorporated into
the CRYSTAL14 software package [Dovesi et al. 2014].

Despite the widespread use of Pólya’s theorem in different science and mathematics
contexts, a low-level, numerical implementation is not available. Typical approaches
use Computer Algebra Systems (CASs) to symbolically generate the Pólya polynomial.
This strategy is ineffective for two reasons. First, CASs are too slow for large problems
that arise in a research setting, and, second, generating the entire Pólya polynomial
(which can have billions or trillions of terms) is unnecessary when one is interested in
only a single stoichiometry.

1The Pólya theorem does not generate the list of unique colorings (which is generally a much harder problem),
but it does determine the number of unique colorings.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:3

Here we demonstrate a low-level algorithm for finding the polynomial coefficient
corresponding to a single stoichiometry. It exploits the properties of polynomials and a
priori knowledge of the relevant term. We briefly describe the Pólya enumeration the-
orem in Section 2, followed by the algorithm for calculating the polynomial coefficients
in Section 3. In the final section, we investigate the scaling and performance of the
algorithm.

2. PÓLYA ENUMERATION THEOREM

2.1. Introduction the Pólya Enumeration Theorem

Pólya’s theorem provides a simple way to construct a generating polynomial whose
coefficients count the numbers of symmetrically distinct colorings for each possible
stoichiometry. The polynomial in Figure 1 above was easy to verify because we were
able to hand count the symmetrically distinct colorings. But suppose there were dozens
of colors and dozens of sites to be colored and hundreds of symmetries to apply. In that
case, it is easier to use Pólya’s theorem to construct the polynomial directly from the
symmetry group.

To describe this very useful theorem, we refer once more to Figure 1. There are four
symmetries—the identity, two 90◦ rotations (clockwise and counterclockwise), and a
180◦ rotation. If we label the colorable sectors 1, 2, 3, and 4, and write the permutations
in disjoint-cycle notation, we have (1)(2)(3)(4) for the identity, the two 90◦ rotations are
represented by (1234) and (1432), while the 180◦ rotation is (13)(24) in cycle notation.

Now Pólya’s theorem simply tells us to replace each cycle of length λ with a sum of
λ-th powers of variables corresponding to the colors available. For example, letting r
and g stand for red and green, the identity is represented by (r + g)(r + g)(r + g)(r + g),
the two 90◦ rotations are each replaced by (r4 +g4), and the 180◦ rotation is replaced by
(r2 +g2)(r2 +g2). When we average these four polynomials, we get the Pólya polynomial
predicted above:

P(r, g) = 1
4

(
(r + g)(r + g)(r + g)(r + g) + (r4 + g4) + (r4 + g4) + (r2 + g2)(r2 + g2)

)
= r4 + r3g + 2r2g2 + rg3 + g4.

(1)

In other words, Pólya’s theorem relies on a structural representation of the sym-
metries as permutations written in disjoint-cycle notation to construct the generating
polynomial we need.

The problem with Pólya, however, is that it requires us to compute the entire poly-
nomial when we may need only one of its coefficients. For example, if we have 50 sites
to color, and 20 colors available, the number of terms in our polynomial (regardless of
symmetries) would be about 4.6 × 1016. That is a lot of work (and memory) to compute
the entire polynomial (and all of those very large terms) if we needed only to know the
number of symmetrically distinct colorings for a single stoichiometry. That information
is contained in just 1 term of the 46 quadrillion terms of the Pólya polynomial. Can we
spare ourselves the work of computing all the others?

Suppose we have a target stoichiometry [c1 : c2 : · · · : cξ], where ξ is the number
of colors and

∑ξ

j=1 c j = n is the number of sites to be colored. To find the number of
symmetrically distinct colorings with those frequencies, we must determine the coef-
ficient of the single term in the Pólya polynomial containing the product xc1

1 xc2
2 . . . xcξ

ξ .
The Pólya polynomial is the average,

P(x1, x2, . . . , xξ) = 1
|G|

(∑
π∈G

Pπ (x1, x2, . . . , xξ)

)
, (2)

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:4 C. W. Rosenbrock et al.

of the polynomials Pπ (x1, x2, . . . , xξ) computed for each permutation π in the symmetry
group G, each Pπ being formed by multiplying the representations of each disjoint cycle
in π (as illustrated in Equation (1)).

Clearly, if we are only interested in the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in P, we may simply
find the coefficient of that product in each Pπ and add those partial coefficients together.
Thus, given a permutation π with k1 cycles of length r1, k2 cycles of length r2, and so
on, up to kt cycles of length rt, with

∑t
i=1 riki = n (the number of sites, t is the number

of cycle types), we must compute the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in Pπ .
It is well known that a product of sums is equal to the sum of all products one

can obtain by taking one summand from each factor (generalizing the familiar First
Outer Inner Last (FOIL) rule used by undergrads to multiply two binomials). Thus
the polynomial Pπ is the sum of all products of the form

∏
s xλ(s)

is (where the product
runs over all cycles s, λ(s) is the length of the cycle s, and xis is one of the colors chosen
from the sum for that cycle). Thus the product we want, xc1

1 xc2
2 . . . xcξ

ξ , has a coefficient
that simply counts the number of products of the form

∏
s xλ(s)

is where the sum of the
exponents for each xi is equal to the target ci.

Each cycle, of length ri (i = 1 . . . t), gets assigned to one of the colors. Let sij be the
number of cycles of length ri assigned to color j (j = 1 . . . ξ). This defines a t × ξ matrix
S = (sij) of non-negative integers, where (1) the sum of row i equals the number of
cycles of length ri:

ξ∑
j=1

sij = ki (row sum condition), (3)

and (2) weighted sum of column j must equal the target frequency of the j-th color:
t∑

i=1

risij = c j (column sum condition), (4)

in order to achieve our target stoichiometry.
For each such matrix, there are a number of possible ways to assign colors to the

cycles, with multiplicities prescribed by S. The number is

F(S) =
t∏

i=1

(
ki

si1, si2, . . . , siξ

)
, (5)

the product of the number of ways to do it for each cycle. Thus we are obliged to sum
the function F(S), so computed, over all matrices S meeting the given row and column
sum conditions (3) and (4).

If we do this computation for each permutation π , and average them (add them
and divide by |G|), we then get the coefficient of the Pólya polynomial P(x1, x2, . . . , xi)
corresponding to our target stoichiometry [c1 : c2 : · · · : cξ]. This calculation depends
only on the cycle type of the permutation, the number of disjoint cycles of different
lengths comprising the disjoint-cycle representation. Thus we only need to make an
inventory of the cycle types for our permutations and do the calculation once for each
distinct cycle type. There will not be more such cycle types than the number of conjugacy
classes in the symmetry group. Also, note, the utility of multinomial coefficients in this
context stems from the likelihood that our permutations will have many cycles of the
same length.

Algorithmically, the process is straight forward. First, we must find all matrices S
which meet the row and sum conditions (3) and (4) above. For each successful matrix,

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:5

Fig. 2. The symmetry group operations of the square. This group is known as the dihedral group of degree
4 or D4. The dashed lines are guides to the eye for the horizontal, vertical, and diagonal reflections (M1,M2
and D1, D2).

we then compute the product of row-multinomial-coefficients. We add those up and
multiply by the number of permutations in the conjugacy class, sum those results for
the conjugacy classes, and divide by the group order. That gives us the Pólya coefficient
for the given stoichiometry.

For example, suppose our permutation is made up of two 1-cycles, three 2-cycles, and
one 4-cycle (so the number of sites is 12), and we have three colors with frequencies
(red:green:blue → 4:6:2) respectively. Then we are looking for 3 × 3 matrices S whose

rows sum to
(

2
3
1

)
and whose columns (when dotted with the cycle lengths

(
1
2
4

)
) sum

to 4, 6, and 2 respectively. There are exactly five such matrices (see Figure 3 and
discussion in Section 3):

(0 0 2
0 3 0
1 0 0

)
,

(0 0 2
2 1 0
0 1 0

)
,

(0 2 0
0 2 1
1 0 0

)
,

(0 2 0
2 0 1
0 1 0

)
,

(2 0 0
1 1 1
0 1 0

)
. (6)

The multinomial coefficient for the top and bottom row in each case is
(2

2,0,0

) = (2
2

) =
1 = (1

1,0,0

)
, so the F(S) in each case is equal to the multinomial coefficient of the middle

row; thus
(3

3

) = 1 in the first case,
(3

2,1

) = 3 for the middle three matrices, and
(3

1,1,1

) = 6
for the right-hand matrix. So our count for this problem is 1 + 3 + 3 + 3 + 6 = 16. We
may check this by computing (r + g + b)2(r2 + g2 + b2)3(r4 + g4 + b4) (a la Pólya) and
noting that the coefficient of r4g6b2 is indeed 16.

Clearly, we can do that for each permutation in the group and sum the results. That
is equivalent to determining in how many ways we may assign a single color to each
cycle in the permutation—in such a way that the total number of occurrences of each
color achieves its target frequency.

2.2. Example: Applying Pólyas Theorem

Here we present a simple example showing how Pólya’s theorem is applied to a small,
finite group. The square has the set of symmetries displayed in Figure 2. These sym-
metries include four rotations (by 0◦, 90◦, 180◦, and 270◦; labeled 1, R1, R2, and R3)
and four reflections (one horizontal, one vertical, and two for the diagonals; labeled

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:6 C. W. Rosenbrock et al.

Table I. Disjoint-Cyclic Form for Each Group Operation in D4 and the Corresponding
Polynomials, Expanded Polynomials and the Coefficient of the x2y2 Term for Each

Op. Disjoint-Cyclic Polynomial Expanded Coeff.

1 (1)(2)(3)(4) (x + y)4 x4 + 4x3 y + 6x2 y2 + 4xy3 + y4 6

D1 (1, 3)(2)(4) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

D2 (1)(2, 4)(3) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

M1 (1, 2)(3, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

M2 (1, 4)(2, 3) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R1 (1, 4, 3, 2) (x4 + y4) x4 + +y4 0

R2 (1, 3)(2, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R3 (1, 2, 3, 4) (x4 + y4) x4 + +y4 0

M1, M2 and D1, D2). This group is commonly known as the dihedral group of degree
four, or D4 for short.2

The group operations of the D4 group can be written in disjoint-cyclic form as in
Table I. For each r-cycle in the group, we can write a polynomial in variables xr

i for
i = 1 . . . ξ , where ξ is the number of colors used. For this example, we will consider the
situation where we want to color the four corners of the square with only two colors. In
that case we end up with just two variables x1, x2, which are represented as x, y in the
table.

The Pólya representation for a single group operation in disjoint-cyclic form results
in a product of polynomials that we can expand. For example, the group operation D1
has disjoint-cyclic form (1, 3)(2)(4) that can be represented by the polynomial (x2 +
y2)(x + y)(x + y), where the exponent on each variable corresponds to the length of the
r-cycle of which it is a part. For a general r-cycle, the polynomial takes the form(

xr
1 + xr

2 + · · · + xr
ξ

)
, (7)

for an enumeration with ξ colors. As described in Section 2.1, we exchange the group
operations acting on the set for polynomial representations that obey the familiar rules
for polynomials.

We will now pursue our example of the possible colorings on the four corners of the
square involving two of each color. Excluding the symmetry operations, we could come
up with

(4
2

) = 6 possibilities, but some of these are equivalent by symmetry. The Pólya
theorem counts how many unique colorings we should recover. To find that number, we
look at the coefficient of the term corresponding to the overall color selection (in this
example, two of each color); thus we look for coefficients of the x2y2 term for each group
operation. These coefficient values are listed in Table I. The sum of these coefficients,
divided by the number of operations in the group, gives the total number of unique
colorings under the entire group action, in this case (6 + 2 + 2 + 2 + 2 + 0 + 2 + 0)/8 =
16/8 = 2.

Next, we apply the procedure discussed in connection with Equation (6) to construct
the matrix S for one of the permutations of the square. It illustrates the idea behind
the general algorithm presented in the next section.

In the symmetries of the square, there is a cycle type consisting of two 1-cycles and
one 2-cycle. The two permutations with that type are (1)(3)(24) and (2)(4)(13). The
cycle lengths are 1 (with multiplicity 2) and 2 (with multiplicity 1). So each of those

2The dihedral groups have multiple, equivalent names. D4 is also called Dih4 or the dihedral group of order
8 (D8).

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:7

permutations requires a matrix S =
(

s11
s21

s12
s22

)
satisfying s11 + s12 = 2 and s21 + s22 = 1

(row sum condition (3)) and s11 + 2s21 = 2 and s12 + 2s22 = 2 (column sum condition
(4)). There are only two matrices of non-negative integers satisfying those conditions
simultaneously: (

2 0
0 1

)
and

(
0 2
1 0

)
. (8)

For each of these matrices, the row-multinomial coefficients are
(2

0,2

) = 1 and
(1

0,1

) = 1
so each matrix yields a product 1. Thus each permutation of this cycle type contributes
2 to the sum. This corresponds to the fact that the coefficient of x2y2 in (x + y)2(x2 + y2)
is 2.

Since there are two permutations of this cycle type, the total contribution of the cycle
type to the overall Pólya polynomial is 4 (which must then be divided by the number
of symmetries in the group).

Thus, in general, the only problem is to find an efficient way of generating these ma-
trix solutions. Since the problem is equivalent to enumerating all lattice points within
a high-dimensional polytope, we presume that a tree search (implemented recursively
or via a backtracking algorithm) may be the most efficient way to achieve this.

3. COEFFICIENT-FINDING ALGORITHM

Our implementation of the tree search is fundamentally identical to the method of the
last section; however, the details may not be immediately recognizable as such.3 In
this section we rephrase the row and column sum conditions (3) and (4) to highlight
the logical connections between our specific implementation and the general ideas
from Section 2. We adopt this approach because (1) for pedagogical value, the matrix
approach is much easier to visualize and (2) the algorithms presented here mirror the
accompanying code closely, which we consider valuable.

First, for a generic polynomial

(
xr

1 + xr
2 + · · · + xr

ξ

)d
, (9)

the exponents of each xi in the expanded polynomial are constrained to the set

V = {0, r, 2r, 3r, . . . , dr}. (10)

Next, we consider the terms in the expansion of the polynomial:

(
xr

1 + xr
2 + · · · + xr

ξ

)d =
∑

k1,k2,...,kξ

μk

ξ∏
i=1

xrki
i , (11)

where the sum is over all possibles sequences k1, k2, . . . , kξ such that the sum of the
exponents (represented by the sequence in ki) is equal to d,

k1 + k2 + · · · + kξ = d. (12)

3If all you are looking for is a working code, you now know enough to use it. Download it at https://
github.com/rosenbrockc/polya.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:8 C. W. Rosenbrock et al.

As described in the introduction, the coefficients μk in the polynomial expansion
Equation (11) are found using the multinomial coefficients

μk =
(

n
k1, k2, . . . , kξ

)
= n!

k1!k2! · · · kξ !

=
(

k1

k1

)(
k1 + k2

k2

)
· · ·

(
k1 + k2 + · · · + kξ

kξ

)

=
ξ∏

i=1

(∑i
j=1 kj

ki

)
. (13)

Finally, we define the polynomial (7) for an arbitrary group operation π ∈ G as4

Pπ (x1, x2, . . . , xξ) =
m∏

α=1

Mrα

α (x1, x2, . . . , xξ), (14)

where each Mrα
α is a polynomial of the form (9) for the αth distinct r-cycle and dα is the

multiplicity of that r-cycle; m is the number of cycle types in Pπ . Linking back to the
matrix formulation, each Mrα

α is equivalent to a row Si in matrix S.
Since we know the fixed stoichiometry term T = ∏ξ

i=1 Ti = ∏ξ

i=1 xci
i in advance, we

can limit the possible sequences of ki for which multinomial coefficients are calculated.
This is the key idea of the algorithm and the reason for its high performance.

For each group operation π , we have a product of polynomials Mrα
α . We begin filtering

the sequences by choosing only those combinations of values viα ∈ Vα = {viα}dα+1
i=1 for

which the sum
m∑

α=1

viα = Ti, (15)

where Vα is the set from Eq. (10) for multinomial Mrα
α . At this point it is useful to refer

to Figure 3 to make the connection to the recursive tree search for possible matrices.
The Vα are equivalent to all the possible values that any of the elements in a row of the
matrix may take. If we take Mr1

1 as an example, then V1 is the collection of all values
that show up in row 1 of any matrix in the figure, multiplied by the number of cycles
with length r1. Constraint (15) is equivalent to the column sum requirement (4).

We first apply constraint (15) to the x1 term across the product of polynomials to find
a set of values {k1α}m

α=1 that could give exponent T1 once all the polynomials’ terms have
been expanded. This is equivalent to finding the set of first columns in each matrix
that match the target frequency for the first color. Once a value k1α has been fixed for
each Mrα

α , the remaining exponents in the sequence {k1α} ∪ {kiα}ξi=2 are constrained via
(12). We can recursively examine each variable xi in turn using these constraints to
build a set of sequences

Sl = {Slα}m
α=1 = {(k1α, k2α, . . . , kξα)}m

α=1, (16)

where each Slα defines the exponent sequence for its polynomial Mrα
α that will produce

the target term T after the product is expanded. Each Slα ∈ Sl represents the trans-
posed matrix S that survives both the row and column sum conditions (highlighted in
green in the figure). Thus, Sl is the set of these matrices for the group operation π . The

4We will use Greek subscripts to label the polynomials in the product and Latin subscripts to label the
variables within any of the polynomials.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:9

Fig. 3. A recursive tree search for some of the possible matrices S for the problem of Section 2: two 1-cycles,
three 2-cycles, and one 4-cycle. We have restricted the figure to include only the zero pendants of the tree,
which produce four of the five relevant matrices in Equation (6). Matrix elements in red (blue) represent the
only possible values that would satisfy the row (column) sum conditions. A red (blue) cross over a matrix
shows that it fails the row (column) sum condition, and its descendants need not be examined. Matrices with
green borders are solutions to the tree search problem. The purple squares show the current row and column
on which the recursive search is operating.

maximum value of l depends on the target term T and how many possible viα values
are filtered out using constraints (15) and (12) at each step in the recursion.

Once the set S = {Sl} has been constructed, we use Equation (13) on each polynomial’s
{kiα}ξi=1 in Slα to find the contributing coefficients. The final coefficient value for term
T resulting from group operation π is

tπ =
∑

l

τl =
∑

l

m∏
α=1

(
dα

Slα

)
. (17)

To find the total number of unique colorings under the group action, this process is
applied to each element π ∈ G and the results are summed and then divided by |G|.

We can further optimize the search for contributing terms by ordering the exponents
in the target term T in descending order. All the {k1α}m

α=1 need to sum to T1 (15); larger
values for T1 are more likely to result in smaller sets of {kiα}m

α=1 across the polynomials.
This happens because if T1 has smaller values (like 1 or 2), then we end up with
lots of possible ways to arrange them to sum to T1 (which is not the the case for the
larger values). Since the final set of sequences Sl is formed using a Cartesian product,
including a few extra sequences from any Ti prunings multiplies the total number of

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:10 C. W. Rosenbrock et al.

sequences significantly. In the figure, this optimization is equivalent to completing a
row with red entries because all the remaining, unfilled entries are constrained by the
row sum condition.

Additionally, constraint (12) applied within each polynomial will also reduce the
total number of sequences to consider if the first variables x1, x2, and so on, are larger
integers compared to the target values T1, T2, and so on. This speed-up comes from
the recursive implementation: If x1 is already too large (compared to T1), then possible
values for x2, x3, . . . are never considered. This optimization is equivalent to completing
matrix columns with blue entries because of the column sum constraint.

3.1. Pseudocode Implementation

Note: Implementations in PYTHON and FORTRAN are available in the supplementary
material.

For both algorithms presented below, the operator (⇐) pushes the value to its right
onto the list to its left.

For algorithm (1) in the EXPAND procedure, the ∪ operator horizontally concatenates
the integer root to an existing sequence of integers.

For BUILD_Sl, we use the exponent k1α on the first variable in each polynomial to
construct a full set of possible sequences for that polynomial. Those sets of sequences
are then combined in SUM_SEQUENCES (alg. 2) using a Cartesian product over the sets in
each multinomial.

When calculating multinomial coefficients, we use the form in Eq. (13) in terms of
binomial coefficients with a fast, stable algorithm from Manolopoulos [2002].

In practice, many of the group operations π produce identical products
Mr1

1 Mr2
2 . . . Mrm

m . Thus before computing any of the coefficients from the polynomials,
we first form the polynomial products for each group operation and then add identical
products together.

4. COMPUTATIONAL ORDER AND PERFORMANCE

The algorithm is structured around the a priori knowledge of the target stoichiometry.
At the earliest possibility, we prune terms from individual polynomials that would
not contribute to the final Pólya coefficient in the expanded product of polynomials
(see Figure 3). Because the Pólya polynomial for each group operation is based on its
disjoint-cyclic form, the complexity of the search can vary drastically from one group
operation to the next. That said, it is common for groups to have several classes whose
group operations (within each class) will have similar disjoint-cyclic forms and thus also
scale similarly. However, from group to group, the set of classes and disjoint-cyclic forms
may differ considerably; this makes it difficult to make a statement about the scaling
of the algorithm in general. As such, we instead provide a formal, worst-case analysis
for the algorithm’s performance and supplement it with experimental examples. For
these experiments, we crafted special groups with specific properties to demonstrate
the various scaling behaviors as group properties change.

4.1. Worst-Case Scaling

Heuristically, the behavior of our algorithm should depend roughly on the size of the
group: the number of permutations we have to analyze. That seems consistent with
our experiments. But that can also be mitigated by noting that some groups of the
same size have many more distinct cycle types than others. For example, if our group
is generated by a single cycle of prime integer length p, then there are only two cycle
types, despite the group having order p.

The majority of computation time should be spent in enumerating those matrices
S and be proportional to the number of same (see Figure 4). Numerical experiments

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:11

ALGORITHM 1: Recursive Sequence Constructor
Procedure initialize(i, kiα, Mrα

α , Vα,T)
Constructs a Sequence Object tree recursively for a single Mrα

α by filtering possible exponents
on each xi in the polynomial. The object has the following properties:

root: kiα, proposed exponent of xi in Mrα
α .

parent: proposed Sequence for ki−1,α of xi−1.
used: the sum of the proposed exponents to left of and including this variable

∑i
j=1 kiα.

i: index of variable in Mrα
α (column index).

kiα: proposed exponent of xi in Mrα
α (matrix entry at iα).

Mrα
α : Pólya polynomial in Pπ (14).

Vα: possible exponents for Mrα
α (10).

T: {Ti}ξ

i=1 target stoichiometry.
. .

if i = 1 then
self.used ← self.root + self.parent.used

else
self.used ← self.root

end

self.kids ← empty
if i ≤ ξ then

for p ∈ Vα do
rem ← p − self.root
if 0 ≤ rem ≤ Ti and |rem| ≤ dαrα − self.used and |p − self.used| mod rα = 0 then

self.kids ⇐ initialize(i + 1, rem, Mrα
α , Vα, T)

end
end

end
Function expand(sequence)

Generates a set of Slα from a single Sequence object.
sequence: the object created using initialize().
. .

sequences ← empty
for kid ∈ sequence.kids do

for seq ∈ expand(kid) do
sequences ⇐ kid.root ∪ seq

end
end

if len(sequence.kids) = 0 then
sequences ← {kid.root}

end

return sequences
Function build Sl(k, V, Pπ , T)

Constructs Sl from {k1α}m
α=1 for a Pπ (14).

k: {k1α}m
α=1 set of possible exponent values on the first variable in each Mrα

α ∈ Pπ .
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

Pπ : Pólya polynomial representation for a single operation π in the group G (14).
T: {Ti}ξ

i=1 target stoichiometry.
. .

sequences ← empty
for α ∈ {1 . . . m} do

seq ← initialize(1, k1α, Mrα
α , Vα, T)

sequences ⇐ expand(seq)
end

return sequences

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:12 C. W. Rosenbrock et al.

ALGORITHM 2: Coefficient Calculator
Function sum sequences(Sl)

Finds τl (17) for Sl = {Slα}m
α=1 (16)

Sl: a set of lists (of exponent sequences {kiα}ξ

i=1) for each polynomial Mrα
α in Pπ (14).

. .
Kl ← Sl1 × Sl2 × · · · × Slm = 〈{(kiα)ξi=1}m

α=1〉l
coeff ← 0
for each {(kiα)ξi=1}m

α=1 ∈ Kl do
if

∑m
α=1 kiα = Ti ∀ i ∈ {1 . . . ξ} then

coeff ← coeff + ∏m
α=1

(dα

{kiα }ξi=1

)
end

end

return coeff
Function coefficient(T, Pπ , V)

Constructs S = {Sl} and calculates tπ (17)
T: {Ti}ξ

i=1 target stoichiometry.
Pπ : Pólya polynomial representation for a single operation π in the group G (14).
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

. .
if m = 1 then

if r1 > Ti ∀ i = 1..ξ then
return 0

else
return

(d1
T1T2 ...Tξ

)
end

else
T ← sorted(T)
possible ← V1 × V2 × · · · × Vm
coeffs ← 0

for {k1α}m
α=1 ∈ possible do

if
∑m

α=1 k1α = T1 then
Sl ← build Sl({k1α}m

α=1, V, Pπ , T)
coeffs ← coeffs+ sum sequences(Sl)

end
end

return coeffs
end

confirm5 that the number of matrices scales exponentially with the number of colors
(fixed group and number of elements in the set), linearly with the number of elements
in the set (fixed number of colors and group), and is linear with the group size (fixed
number of colors and elements in the set). The number of entries in the matrix S is
tξ (see the discussion above Equation (3)) and the height of the entries is (roughly)
bounded by the number of cycles and (very roughly) by the color frequencies divided
by cycle lengths. This makes computing a time estimate based on these factors very
difficult, but in the worst case, it could grow like the tξ -th power of the average size of the
entries, which will depend on the size of the target frequencies, and so on. This would
be a very complex function to estimate, but we may expect it to grow exponentially for

5Figures are included in the code repository. See supplementary material.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:13

Fig. 4. Normalized algorithm scaling with the number of relevant matrices to enumerate. For large matrix
counts, the behavior appears linear, supporting the hypothesis that the algorithm scales roughly with the
number of matrices. The scatter is appreciable only for small matrix counts (less than 106).

Fig. 5. Log plot of the algorithm scaling as the number of colors increases. Since the number of variables
xi in each polynomial increases with the number of colors, the combinatoric complexity of the expanded
polynomial increases drastically with each additional color; this leads to an exponential scaling. The linear
fit to the logarithmic data has a slope of 0.403.

very large input. We did not find that to be an impediment for the sizes of problems we
needed to solve.

4.2. Experiments Demonstrating Algorithm Scaling

In Figure 5, we plot the algorithm’s scaling as the number of colors in the enumer-
ation increases (for a fixed group and number of elements). For each r-cycle in the
disjoint-cyclic form of a group operation, we construct a polynomial with ξ variables,
where ξ is the number of colors used in the enumeration. Because the group opera-
tion results in a product of these polynomials, increasing the number of colors by 1
increases the combinatoric complexity of the polynomial expansion exponentially. For

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:14 C. W. Rosenbrock et al.

Fig. 6. Algorithm scaling as the number of elements in the finite set increases (for two colors). The Pólya
polynomial arises from the group operations’ disjoint-cyclic form, so more elements in the set results in a
richer spectrum of possible polynomials multiplied together. Because of the algorithms aggressive pruning
of terms, the exact disjoint-cyclic form of individual group operations has a large bearing on the algorithm’s
scaling. As such, it is not surprising that there is some scatter in the timings as the number of elements in
the set increases.

this scaling experiment, we used the same transitive group acting on a finite set with
20 elements for each data point but increased the number of colors in the fixed color
term T . We chose T by dividing the number of elements in the group as equally as
possible; thus for two colors, we used [10, 10]; for three colors we used [8, 6, 6], then
[5, 5, 5, 5], [4, 4, 4, 4, 4], and so on. Figure 5 plots the log10 of the execution time (in
ms) as the number of colors increases. As expected, the scaling is linear (on the log
plot).

As the number of elements in the finite set increases, the possible Pólya polynomial
representations for each group operation’s disjoint-cyclic form increases exponentially.
In the worst case, a group acting on a set with k elements may have an operation with
k 1-cycles; on the other hand, that same group may have an operation with a single
k-cycle, with lots of possibilities in between. Because of the richness of possibilities, it
is almost impossible to make general statements about the algorithm’s scaling without
knowing the structure of the group and its classes. In Figure 6, we plot the scaling for
a set of related groups (all are isomorphic to the direct product of S3 × S4) applied to
finite sets of varying sizes. Every data point was generated using a transitive group
with 144 elements. Thus, this plot shows the algorithm’s scaling when the group is
the same and the number of elements in the finite set changes. Although the scaling
appears almost linear, there is a lot of scatter in the data. Given the rich spectrum of
possible Pólya polynomials that we can form as the set size increases, the scatter is not
surprising.

Finally, we consider the scaling as the group size increases (Figure 7). For this test, we
selected the set of unique groups arising from the enumeration of all derivative super
structures of a simple cubic lattice for a given number of sites in the unit cell [Hart
and Forcade 2008]. Since the groups are formed from the symmetries of real crystals,
they arise from the semidirect product of operations related to physical rotations and
translations of the crystal. In this respect, they have similar structure for comparison.
In most cases, the scaling is obviously linear; however, the slope of each trend varies
from group to group. This once again highlights the scaling’s heavy dependence on

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:15

Fig. 7. Normalized algorithm scaling with group size for an enumeration problem from solid state physics
[Hart and Forcade 2008]. We used the unique permutation groups arising from all derivative super structures
of a simple cubic lattice for a given number of sites in the unit cell. The behavior is generally linear with
increasing group size.

the specific disjoint-cyclic forms of the group operations. Even for groups with obvious
similarity, the scaling may differ.

4.3. Comparison with Computer Algebra Systems

In addition to the explicit timing analysis and experiments presented above, we also
ran a group of representative problems with our algorithm and MATHEMATICA (a common
CAS). We also attempted the tests with MAPLE but were unable to obtain consistent
results between multiple runs of the same problems.6 So, we have opted to exclude the
MAPLE timing results. For the comparison with MATHEMATICA, we used MATHEMATICA’s
Expand and Coefficient functions to return the relevant coefficient from the Pólya
polynomial (see Figure 8).

5. SUMMARY

Until now, no low-level, numerical implementation of Pólya’s enumeration theorem has
been readily available; instead, a CAS was used to symbolically solve the polynomial
expansion problem posed by Pólya. While CAS’s are effective for smaller, simpler cal-
culations, as the difficulty of the problem increases, they become impractical solutions.
Additionally, codes that perform the actual enumeration of the colorings are often im-
plemented in low-level codes, and interoperability with a CAS is not necessarily easy
to automate.

We presented a low-level, purely numerical algorithm and code that exploits the
properties of polynomials to restrict the combinatoric complexity of the expansion.
By considering only those coefficients in the unexpanded polynomials that might con-
tribute to the final answer, the algorithm reduces the number of terms that must be
included to find the significant term in the expansion.

6The inconsistency manifests in MAPLE sometimes returning 0 instead of the correct result and sometimes
running the same problem unpredictably in hours or seconds.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:16 C. W. Rosenbrock et al.

Fig. 8. Comparison of the CPU time (a) and memory usage (b) between the FORTRAN implementation of our
algorithm and MATHEMATICA as the number of colors increases. These are the times needed to generate the
data in Figure 5.

Because of the algorithm scaling’s reliance on the exact structure of the group and
the disjoint-cyclic form of its operations, a rigorous analysis of the scaling is not possible
without knowledge of the group. Instead, we presented some numerical timing results
from representative, real-life problems that show the general scaling behavior.

In contrast to the CAS solutions whose execution times range from milliseconds to
hours, our algorithm consistently performs in the millisecond to second regime, even
for complex problems. Additionally, it is already implemented in both high- and low-
level languages, making it useful for confirming enumeration results. This makes it an
effective substitute for alternative CAS implementations.

REFERENCES

Stefano Curtarolo, Gus L. W. Hart, Marco Buongiorno Nardelli, Natalio Mingo, Stefano Sanvito, and Ohad
Levy. 2013. The high-throughput highway to computational materials design. Nat. Mater. 12, 3 (MAR
2013), 191–201. DOI:http://dx.doi.org/10.1038/NMAT3568

Kecai Deng and Jianguo Qian. 2014. Enumerating stereo-isomers of tree-like polyinositols. J. Math. Chem.
52, 6 (2014), 1581–1598.

Roberto Dovesi, Roberto Orlando, Alessandro Erba, Claudio M. Zicovich-Wilson, Bartolomeo Civalleri,
Silvia Casassa, Lorenzo Maschio, Matteo Ferrabone, Marco De La Pierre, Philippe D’Arco, Yves Nol,
Mauro Caus, Michel Rrat, and Bernard Kirtman. 2014. CRYSTAL14: A program for the ab initio in-
vestigation of crystalline solids. Int. J. Quant. Chem. 114, 19 (2014), 1287–1317. DOI:http://dx.doi.org/
10.1002/qua.24658

Antoine Genitrini, Bernhard Gittenberger, Veronika Kraus, and Cécile Mailler. 2015. Associative and com-
mutative tree representations for Boolean functions. Theor. Comput. Sci. 570 (2015), 70–101.

Modjtaba Ghorbani and Mahin Songhori. 2014. The enumeration of Chiral isomers of tetraammine plat-
inum (II). Match-Communications in Mathematical and in Computer Chemistry 71, 2 (2014), 333–340.

Frank Harary. 1955. The number of linear, directed, rooted, and connected graphs. Trans. Am. Math. Soc.
78, 2 (1955), 445–463.

Gus L. W. Hart and Rodney W. Forcade. 2008. Algorithm for generating derivative structures. Phys. Rev. B
77 (Jun 2008), 224115. Issue 22. DOI:http://dx.doi.org/10.1103/PhysRevB.77.224115

Gus L. W. Hart and Rodney W. Forcade. 2009. Generating derivative structures from multilattices: Applica-
tion to HCP alloys. Phys. Rev. B 80 (July 2009), 014120.

Gus L. W. Hart, Lance J. Nelson, and Rodney W. Forcade. 2012. Generating derivative struc-
tures for a fixed concentration. Comp. Mat. Sci. 59 (2012), 101–107. DOI:http://dx.doi.org/10.1016/
j.commatsci.2012.02.015

B. A. Kennedy, D. A. McQuarrie, and C. H. Brubaker Jr. 1964. Group theory and isomerism. Inorg. Chem. 3,
2 (1964), 265–268.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

http://dx.doi.org/10.1038/NMAT3568
http://dx.doi.org/10.1002/qua.24658
http://dx.doi.org/10.1002/qua.24658
http://dx.doi.org/10.1103/PhysRevB.77.224115
http://dx.doi.org/10.1016/j.commatsci.2012.02.015
http://dx.doi.org/10.1016/j.commatsci.2012.02.015

Numerical Algorithm for Pólya Enumeration Theorem 1.11:17

Peter Lackner, Harald Fripertinger, and Gerhard Nierhaus. 2015. Peter Lackner/tropical investigations. In
Patterns of Intuition. Springer, Berlin, 279–313.

Yannis Manolopoulos. 2002. Binomial coefficient computation: Recursion or iteration? ACM SIGCSE Bulletin
InRoads 34 (Dec 2002). Issue 4. DOI:http://dx.doi.org/10.1145/820127.820168

James McGrane, Sanjaye Ramgoolam, and Brian Wecht. 2015. Chiral ring generating functions & branches
of moduli space. arXiv preprint arXiv:1507.08488 (2015).

Sami Mustapha, Philippe DArco, Marco De La Pierre, Yves Nol, Matteo Ferrabone, and Roberto Dovesi.
2013. On the use of symmetry in configurational analysis for the simulation of disordered solids. J.
Phys.: Condens. Matter 25, 10 (2013), 105401. http://stacks.iop.org/0953-8984/25/i=10/a=105401.

George Pólya. 1937. Kombinatorische anzahlbestimmungen fr gruppen, graphen und chemische verbindun-
gen. Acta Math. 68, 1 (1937), 145–254.

George Pólya and Ronald C. Read. 1987. Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds (1987).

Jianguo Qian. 2014. Enumeration of unlabeled uniform hypergraphs. Discr. Math. 326, 1 (2014), 66–74.
R. W. Robinson, F. Harry, and A. T. Balaban. 1976. The numbers of chiral and achiral alkanes and monosub-

stituted alkanes. Tetrahedron 32, 3 (1976), 355–361.
Masahiko Taniguchi, Sarah Henry, Richard J. Cogdell, and Jonathan S. Lindsey. 2014. Statistical consider-

ations on the formation of circular photosynthetic light-harvesting complexes from rhodopseudomonas
palustris. Photosynth. Res. 121, 1 (2014), 49–60.

J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt, M. Lewenstein, and A. Acı́n. 2015. Nonlocality
in many-body quantum systems detected with two-body correlators. arXiv preprint arXiv:1505.06740
(2015).

Received December 2015; revised May 2016; accepted June 2016

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

http://dx.doi.org/10.1145/820127.820168
http://stacks.iop.org/0953-8984/25/i$=$10/a$=$105401

