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First principles thermodynamical modeling
of the binodal and spinodal curves in lead
chalcogenides†
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Stefano Curtarolo*bh

High-throughput ab initio calculations, cluster expansion techniques, and thermodynamic modeling have

been synergistically combined to characterize the binodal and the spinodal decompositions features in the

pseudo-binary lead chalcogenides PbSe–PbTe, PbS–PbTe, and PbS–PbSe. While our results agree with

the available experimental data, our consolute temperatures substantially improve with respect to previous

computational modeling. The computed phase diagrams corroborate that in ad hoc synthesis conditions

the formation of nanostructure may occur justifying the low thermal conductivities in these alloys. The

presented approach, making a rational use of online quantum repositories, can be extended to study

thermodynamical and kinetic properties of materials of technological interest.

1 Introduction

For decades, the physical properties of lead chalcogenides have
generated substantial interest in a number of fields, in particular
for applications in semiconductor technology.1 PbS, PbSe, and
PbTe have distinct structural and electronic properties compared
to III–V and II–VI compounds. These include high carrier mobi-
lities, narrow band gaps with negative pressure coefficients, high
dielectric constants, and a positive temperature coefficient.2–4

In addition, PbS, PbSe, and PbTe were predicted to be weak
topological insulators, with a band inversion observed at the
N point of the distorted body-centered tetragonal Brillouin
zone.5 These important and varied properties have allowed

lead chalcogenides to be used extensively in optoelectronic
devices such as lasers and detectors, thermophotovoltaic energy
converters, and thermoelectric materials.1,6–10

As thermoelectric materials, lead chalcogenides may exhibit
electrical conductivities, s, in excess of 2–4 � 10�4 O�1 cm�1,
thermopowers, S, around 150 mV K�1, and thermal conductivities,
k, on the order of 1–2 Wm�1 K�1. This leads to figures of merit
ZT = sS2/k larger than 1 at high temperatures, T. Such out-
standing performances are due on the details of the electronic
structure,11–15 and on the ability to dramatically reduce the
thermal conductivity with alloying and nanostructuring.16–19

While pure lead chalcogenides are attractive on their own, their
alloys are even more interesting. The appeal arises from their
mechanical and electronic tunability, which can be optimized for
specific technological needs.20–22 For example, the PbTe1�xSex

pseudo-binary system has a higher ZT value than its corres-
ponding binary forms.23,24 Thallium doping in PbTe causes
changes in the electronic density of states, increasing the ZT
value to 1.5 at 773 K.11 Similarly, a ZT of 1.3 at 850 K was reported
for aluminum doped PbSe.25 Furthermore, Pb9.6Sb0.2Te10�xSbx

is known to exhibit lower thermal conductivity and a higher
ZT than PbSe1�xTex.26 This is also true for nanostructured
(Pb0.95Sn0.05Te)0.92(PbS)0.08, as the low thermal conductivity
leads to a ZT = 1.5 at 642 K.27 The properties of this group
of pseudo-binaries depend greatly on the atomic details of
the material’s morphology. This can be partially understood
in terms of thermodynamical features. The excellent thermo-
electric performances, for example, were tentatively ascribed to
the limited miscibility of the components. This gives rise to
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structural inhomogeneities that lower the thermal conductivity
without damaging the electronic transport.19 Such control over
the morphology could be also used to optimize functionalities
associated with topological effects.

In this work we study the phase diagram of lead chalco-
genide pseudo-binaries. We predict quantitatively the boundary
of the solid solution (the binodal curve that defines the region
of miscibility), as well as the spinodal region. These features are
key for rationalizing and honing synthesis and characterization
of optimized systems. To the best of our knowledge, our study
is the first to completely and accurately reports such character-
ization. The phase diagram is essential for properly establish-
ing manufacturing processes. There has been only one previous
attempt to model phase diagrams of lead chalcogenides using
thermodynamic modeling (TM),28 which predicted consolute
temperature (Tc) values far from those reported in experimental
studies.29 The disagreement was attributed to the difficulty
of an exhaustive exploration of all the possible structural con-
figurations for each composition. This difficulty can be rectified
by using the cluster expansion (CE) technique which is a
well known method to investigate the energetics of various
materials.30–33 Here, we built upon the synergy between cluster
expansion (CE) techniques, high-throughput (HT) ab initio
calculations,32,34,35 and thermodynamical modeling to find
acceptable agreement between our Monte Carlo simulations
(MC) and the available experimental results.

2 Methodology
2.1 Thermodynamic modeling

Pseudo-binary systems are represented by the formula (AxA
BxB

)aCc

(or AxB1�xC) with mole fractions xA and xB of elements A and
B respectively, related by xA + xB = 1. The small letters a
and c represent number of sites per formula.36,37 The Gibbs
energy of such iso-structural pseudo-binary systems can be
written as:36,37

G(A,B)aCc
= xAGAaCc

+ xBGBaCc
+ kBT(xA ln(xA) + xB ln(xB)) + xAxBLA,B:C

(1)

where GAaCc
and GBaCc

represent the Gibbs free energy of AaCc

and BaCc materials. These two variables can be computed at
any temperature by fitting available experimental data38 to the
polynomial form39 shown in eqn (2):

G(T) = a + bT + cT ln T + dT 2 + eT�1 + f T 3. (2)

The third term in the eqn (1) is the entropy of mixing, and the
last term is the excess energy of mixing that parameter can take
negative or positive values. If LA,B:C is negative, it indicates that
the system tends to create a solid solution. A positive value of
LA,B:C indicates a repulsive interaction between phases, penalizing
formation of intermediate alloys. To find the excess mixing
energy, the composition-dependent interaction parameter LA,B:C

can be calculated with eqn (3):

DH = xAxBLA,B:C. (3)

The enthalpy of formation, DH, is defined as:

DH = E(A,B)aCc
� xAEAaCc

� xBEBaCc
, (4)

where E(AB)aCc
, EAaCc

, and EBaCc
are the total energies of compounds

(AB)aCc, AaCc and BaCc, respectively. These energies can be
found from the fully relaxed structures using density functional
theory (DFT).

A combination of high throughput ab initio calculations and
thermodynamic modelling are used to predict the interaction
parameter, L(x).39–41 The result is a zero temperature approxi-
mation of the actual value. The most common method to describe
the composition dependent interaction parameter is the Redlich–
Kister equation,36,37,42 where the interaction parameter is written
in a polynomial form:

LðxÞ ¼
Xn
i¼0

Li xA � xBð Þn: (5)

We fit this polynomial to the formation enthalpy data obtained
from DFT and/or CE calculations. We checked that an n = 2
polynomial is enough to obtain a good fit to the data, so that
only L0, L1, and L2 need to be determined:

L(x) C L0 + xL1 + x2L2 (6)

to compute the interaction parameter.
The main computational challenge lies in characterizing

many configurations for many compositions. Some authors have
attempted to address the issue, by generating, few configura-
tions and/or few compositions which is computationally really
demanding28,39–41 Here, we challenged the problem more
drastically: by relying on the advantages of a hybrid cluster
expansion (CE)- high throughput approach43 which features an
exhaustive exploration of different configurations for all the
different compositions. Cluster expansion is widely used to describe
phase diagrams, in which A and B belong to the same sublattice, by
making the exploration of multiconfigurational space computa-
tionally affordable.32,44,45 The automatic generation of hundreds
or thousands of configurations for whole composition range and
the prediction of their energy only computing some tens of DFT
structures make CE the ideal and most reliable in lattice techni-
que to avoid a large set of DFT supercell calculations. The
computational efficiency was achieved with HT methods,43,46

and rational use of online repositories (AFLOWLIB.org).47

2.2 Cluster expansion

In the cluster expansion technique, the configurational energy of an
alloy as written as a sum of many-body occupation variables {s}:48

EðsÞ ¼ J0 þ
X
i

Jisi þ
X
ij

Jijsij þ . . . ; (7)

where J0, Ji, Jij, etc. are known as effective cluster interactions
and must be determined.

The above equation can be rewritten into symmetrically
distinct sets of clusters, a:

EðsÞ ¼
X
a

maJa
Y
i2a

si

* +
; (8)
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where ma represents symmetrically equivalent clusters a in a
given reference volume.30 The Ja parameters are obtained by
fitting a relatively small number of DFT calculated energies.

The reliability of the predicted energy may be determined
using the cross-validation score CV:

ðCVÞ2 ¼ 1

N

XN
S¼1

ES � ÊS

� �2
; (9)

where ES represents the calculated energies from DFT and ÊS is
the predicted energies from CE. A small CV score guarantees
that CE predicted energies are in agreement with DFT computed
energies. The enumeration of configurations, calculation of the
effective interaction parameters, determination of ground state
structures, and prediction of more structures was performed
with the Alloy Theoretic Automated Toolkit (ATAT).49 Calculated
phase diagrams were obtained with Monte Carlo (MC) simula-
tions performed with phb code. The algorithm automatically
follows a given phase boundary and is provided by the ATAT
package.49–51

2.3 High-throughput ab initio calculations

All DFT calculations were carried out by using the Automatic-
Flow for Materials Discovery (AFLOW)47,52,53 and DFT Vienna
ab initio simulation program (VASP).54 Calculations were
performed using AFLOW standards.55 We use the projector
augmented wave (PAW) pseudopotentials56 and the exchange
and correlation functionals parametrized by the generalized
gradient approximation proposed by Perdew–Burke–Ernzerhof.57

All calculations use a high energy-cutoff, which is 40%
larger than the maximum cutoff of all pseudopotentials
used. Reciprocal space integration was performed using
8000 k-points per reciprocal atom. Spin–orbit coupling was
not treated in the calculations due to its minimal influence in
DH (smaller than 1.5 meV per atom). Structures were fully
relaxed (cell volume and ionic positions) such that the energy
difference between two consecutive ionic steps was smaller
than 10�4 eV.

PbS, PbSe and PbTe crystallize in the NaCl structure and
belong to the Fm%3m space group (# 225). We used the bulk
primitive cell (2 atoms per cell) as input for the cluster expan-
sion calculations. The number of atoms for each configuration
depend on the alloy concentration, x, however, supercells of
20 atoms were chosen as the limit size for structures generated
by ATAT package.

For each system, we used 100 DFT calculated energies and
250 CE predicted energies for 19 different compositions. While
the number of DFT calculation is based on obtaining a CV score
below 5 meV, the number of predicted energies was converged
until no significance changes were observed in the consolute
temperature of the systems (see Fig. S1, ESI†). This exhaustive
multiconfigurational screening is the main difference com-
pared with previous studies for this systems.28 Space and point
group symmetries of intermediate composition structures were
determined using AFLOW.

3 Results and discussions
3.1 The PbSe1�xTex alloy

In agreement with experimental data, we found that PbSe and
PbTe are immiscible systems at 0 K. This is shown in Fig. 1(a),
where formation enthalpies are positive for all compositions
(0 o x o 1). The CE predicted energies ( ) are in excellent
agreement with DFT calculated structures (J) providing a
cross validation score of 4 � 10�4. Eqn (3) is used to fit the
interaction parameters L0, L1, L2 to the highly symmetric

Fig. 1 (a) Formation enthalpies of the PbSe–PbTe structures using DFT
calculations (J) and CE technique ( ). Highly symmetric structures are
represented by and the fitting of these points to obtain the interaction
parameter is plotted with a blue dashed line. (b) DG(x) diagram at various
temperatures. (c) Binodal and spinodal curves from TM ( and ), and
MC simulations ( ), compared with experimental data29 (–����) and the
previous theoretical model ( ) from Boukhris et al.28
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structures (HSS)58,59 included HSS have a larger degeneracy
and thus greater weight in the properties of the ensemble;
particularly at high temperatures. In order to emphasize the
importance of HSS with respect to other structures that con-
tribute with a smaller weight, we computed interaction para-
meters by averaging over the whole data set (see Fig. S3(b), ESI†).
This approach drastically decreases the consolute temperature
(346 K) and it is far from experimental or MC results and closer
to previous theoretical results.28 These effects may be ascribed to
an incorrect averaging methods that does not take into account
properly the weight of the HSS with respect to the other
structures. The comparison with experimental data demon-
strate the relevance of the HSS and their large contribution to
the properties of the alloy.

Our quantitative results confirm the Hume–Rothery rules.60

These rules qualitatively predict the miscibility of two metals
based on four properties: atomic radius, crystal lattice, valence
and electronegativity. Amongst the chalcogens, the atomic
radius changes from 1.04 Å in S, to 1.17 Å in Se, to 1.37 Å in
Te. These size variations create a mismatch between the lattice
parameters of PbTe and PbSe, causing incoherence in the
interface and phase decomposition, eventually. DG(x) diagrams
at different temperatures are plotted in Fig. 1(b). It can be seen
the DG function has two minima and a single maximum at low
temperatures. At high temperatures close to Tc, it becomes
convex, with one minimum.

The binodal curve Tc(x) is defined by the horizontal tangent
points of the Gibbs free energy, G. When T o Tc, the alloy starts
decomposing. Additionally, our calculations let us determine
the spinodal curve that discriminates metastable and unstable
regions in the pseudo-alloy phase diagram. The spinodal curve
is the locus of the points where the second derivative of G is
equal to 0:

@2GðABÞaCc

@x2
¼ 0: (10)

We computed first and second derivatives of the Gibbs free
energy within our thermodynamical model. In order to obtain
the L0, L1, L2 that are necessary to compute L(x) at any composi-
tion, we use HSS to fit eqn (3). After computing the Ln constants,
DG(Se,Te)aPbc

is obtained via eqn (1). The results obtained from the
thermodynamic model are compared with our MC results,
previous theoretical predictions,28 and experimental data.29,61

Our calculations encompass the entire range of concentra-
tions, and reproduce the asymmetry observed experimentally in
the binodal curve. In order to quantitatively compare all data, we
analyzed the consolute temperature or upper critical solution
temperature (Tc) describing the lowest temperature at which
both phases are miscible at any composition. Experimentally
PbSe1�xTex alloy presents, at x = 0.4, a Tc closer to 623 K.29,61 This
quantity is far from the value predicted by Boukhris et al.,28

which is around 106 K. The consolute temperature predicted
by our thermodynamic model at 520 K (16.5% error) is around
x = 0.34 (see Fig. 1(c)). Our results quantitatively improve the
prediction of Tc with of Boukhris et al.28 because of the exhaustive
multiconfigurational exploration allowed by CE technique.

We emphasize that the CE approximation only reduces the
computational cost of the method, making it more affordable for
a wider exploration of the multiconfigurational space (see Fig. S2,
ESI†). Moreover, this value approaches the results obtained by
much more expensive techniques such as MC, in which we
obtain a value close to 550 K (11.7% error). Discrepancies
between MC and TM at larger Te (Se) concentrations arise from
difficulties in converging MC calculations in the dilute limit
of Se (Te).

The experimental miscibility gap presents a slight asymmetric
form that is reproduced by MC and our TM. This asymmetry is
observed in experiments, but was not seen in previous theore-
tical work.28 This phenomenon will be discussed in the next
section.

In contrast to the binodal curve, the spinodal curve is quite
symmetric. The combination of the symmetric spinodal and
asymmetric binodal curves at the Se-rich region causes nuclea-
tion of PbSe1�xTex at higher temperatures and nucleation cause
a Se-rich nano-structuring. This information is very impor-
tant for fine tuning synthesis protocols to obtain the desired
morphologies.

3.2 The PbS1�xTex alloy

The atomic radius of Te is 24% larger than the S radius. Thus,
the PbS–PbTe system follows the same trend as PbSe–PbTe, and
they are immiscible at 0 K.

Our DH values are greater than 0 eV for the whole range of
concentrations (see Fig. 2(a)). CE predicted energies are again in
agreement with DFT calculations, obtaining a CV score of about
3 � 10�3. The fitting for L(x) is also depicted in Fig. 2(a) using
highly symmetric points. Similarly to PbSe–PbTe, the DG func-
tion changes to a convex shape at high temperatures (Fig. 2(b)).

The calculated phase diagram of the PbS1�xTex alloy is shown
in Fig. 2(c). Experimental results show again a slight asymmetry
with a maximum around x = 0.3. This is in agreement with our
results, while MC simulations fail to show this asymmetry. The
predicted consolute temperatures for PbS–PbTe follow the same
trend as PbSe–PbTe. Results published by Boukhris et al.28 con-
siderably underestimate the experimental value for Tc (1083 K).
Our prediction of the consolute temperature is slightly larger than
experiments;29 being 1385 and 1365 K using MC simulations
and TM, respectively. As seen from Fig. 1(c) and 2(c) PbSe–PbTe
and PbS–PbTe systems show a very similar trend of a slightly
asymmetric spinodal curve, and considerably asymmetric binodal
curve. This trend shows that formation of the Te-rich alloy starts
at lower temperatures than Se-rich compositions.

3.3 The PbS1�xSex alloy

Our methodology was also applied to the PbS–PbSe system. All
positive energies in Fig. 3 indicate that PbS and PbSe systems
are not miscible at 0 K. As far as we know, there are no experi-
mental data available below 573 K for this system.61 However, it
has been shown that MC simulations predict the Tc for differ-
ent systems quite well, and can describe the miscibility gap.30,31

For this alloy, thermodynamic modelling predicts a Tc slightly
below 200 K and MC predicts a Tc slightly lower than 250 K.
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3.4 General considerations

The lattice mismatch between the two solids (PbS, PbSe, or PbTe)
is a good descriptor to analyze the trends observed experimentally
(see Fig. 4). Lattice mismatch, e, is defined as:

e ¼
aðA;BÞaCc

� asolvent

� �
asolvent

� 100; (11)

where a(A,B)aCc
denotes the lattice constant of intermediate

alloys and asolvent is the lattice constant of the most abundant

binary alloy. There is a correlation between the lattice mismatch
of the alloy, DH, and the consolute temperature. The higher the
mismatch, the higher DH becomes and thus, a higher Tc is
obtained. For instance, the larger mismatch corresponds to the
PbS–PbTe system, which presents a maximum enthalpy of for-
mation at x = 0.5, with 80 meV per atom and a Tc of 1083 K. For
the PbSe–PbTe system, the maximum DH is around 22 meV per
atom and the consolute temperature is 623 K. Following this
trend, PbS–PbSe system presents a smaller mismatch and a
smaller DH 8 meV per atom. Thus, a consolute temperature

Fig. 2 (a) Formation enthalpies of the PbS–PbTe structures using DFT
calculations (J) and CE technique ( ). Highly symmetric structures are
represented by and the fitting of these points to obtain the interaction
parameter is plotted with a blue dashed line. (b) DG(x) diagram at various
temperatures. (c) Binodal and spinodal curves from TM ( and ), and
MC simulations ( ), compared with experimental data29 (–����) and the
previous theoretical model ( ) from Boukhris et al.28

Fig. 3 (a) Formation enthalpies of the PbS–PbSe structures using DFT
calculations (J) and CE technique ( ). Highly symmetric structures are
represented by and the fitting of these points to obtain the interaction
parameter is plotted with a blue dashed line. (b) DG(x) diagram at various
temperatures. (c) Binodal and spinodal curves from TM ( and ), and
MC simulations ( ), compared with experimental data29 (–����) and the
previous theoretical model ( ) from Boukhris et al.28
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smaller than 623 K is expected. If we approximate this correla-
tion to a linear function, for a lattice mismatch around 3% we
get a Tc close to 270 K; which is in agreement with MC and our
thermodynamic model results.

Mismatch between lattices can be also used to explain the
asymmetry of the binodal curves. We can define the asymmetry
of the curve as the ratio between the decomposition tempera-
ture of two points equidistant to x = 0.5. We have chosen 0.2
and 0.8 to define our asymmetry descriptor, eT:

eT ¼
Tðx ¼ 0:8Þ
Tðx ¼ 0:2Þ: (12)

Using this definition, we can assume that a perfectly symmetric
spinodal curve has eT = 1.

As discussed above, mismatch between lattices is directly
related to the magnitude and size of the spinodal curve. Mismatch
is the driving force in the three systems we are studying. Thus,
we propose a second asymmetry descriptor, er, based on the
ratio between the lattice mismatch at two points equidistant
to x = 0.5:

er ¼
eðx ¼ 0:8Þ
eðx ¼ 0:2Þ: (13)

The asymmetry descriptor values for the three systems are
shown in Table 1. eT shows PbS–PbSe as the most asymmetric
spinodal curve, then PbS–PbTe, and finally the PbSe–PbTe
system. This trend is exactly the same for er, emphasizing the
importance of the lattice strain in the of these systems. The
ability of the method to explore a large configurational space
guarantees the correct description of the asymmetry of the
binodal curve.

4 Conclusions

A hybrid approach, comprising high-throughput ab initio and
cluster-expansion techniques is used to create a thermodynamic
model for calculating binodal and spinodal decompositions in
pseudo binary lead chalcogenides (PbSe–PbTe and PbS–PbTe).
The model overcomes the limitations of previous theoretical
studies, where too few compositions and/or configurations were
taken into account. The obtained thermodynamical features
are very close to the experimentally data, when available. We
also capture the asymmetry of the binodal curve, experimentally
observed and previously computationally unresolved. Additionally,
phase diagrams for systems without experimental characteriza-
tion, such as the PbS–PbSe alloy, are suggested. The results have
been validated by using MC simulations, and lattice mismatch
between the binary solids descriptors.

Overall the approach is suitable for the high-throughput
characterization of miscibility gaps, spinodal and other decom-
position phenomena.
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