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Our society’s environmental and economic progress depends
on the development of high-performance materials such
as lightweight alloys, high-energy-density battery materials,
recyclable motor vehicle and building components, and energy-
efficient lighting. Meeting these needs requires us to understand
the central role of crystal structure in a material’s properties.
Despite more than 50 years of progress in first-principles
calculations, it is still impossible in most materials to infer
ground-state properties purely from a knowledge of their atomic
components—a situation described as ‘scandalous’ in the well-
known essay by Maddox1. Many methods attempt to predict
crystal structures and compound stability, but here I take a
different tack—to infer the existence of structures on the basis of
combinatorics and geometric simplicity2. The method identifies
‘least random’ structures, for which the energy is an extremum
(maximum or minimum). Although the key to the generic nature
of the approach is energy minimization, the extrema are found in
a chemistry-independent way.

A fundamental goal of solid-state physics and materials science
is predicting the existence and properties of materials on the basis
only of a knowledge of their constituents. For example, selecting
two elements A and B from the periodic table, we should be able to
predict whether or not they will form a stable compound or unmix.
Furthermore, we should be able to predict the properties of the
resulting compound or solid solution. To achieve this goal, we must
be able to accurately treat the quantum-mechanical interactions of
the constituent atoms in a solid. But in reality much of the progress
towards achieving this goal has been made without a direct solution
of the quantum-mechanical problem.

Early work based on the ideas of Hume-Rothery3, chemical
arguments based on electronegativity4,5 and other empirical
approaches were quite successful in the beginning of this
endeavour. These approaches form the underpinnings of modern-
day materials science. Conceptually similar but more modern
versions of this approach are the Pettifor maps6, data mining7

and information theoretic8 methods. All of these approaches
make predictions broadly consistent with known structures and
compounds, and in many cases, they provide simple explanations
for their existence. More importantly, they sometimes suggest
unsuspected stable compounds.

There is another, less heuristic class of methods that attempts
to make similar prognoses by working directly or indirectly from
quantum mechanics. Included in this class are cluster-expansion
methods9–11, the coherent potential approximation methods and its
many extensions12,13, bond order potentials14 and the embedded-
atom method15,16.

Here I advocate another approach, an approach that suggests
new structures simply by geometric simplicity. These structures
have few atoms in the unit cell and simple atom–atom correlations.

For example, enumerating the possible binary structures of a
face-centred-cubic (f.c.c.) lattice, we immediately find that the
simplest structure is the well-known L10 structure. This structure
is a very common intermetallic structure—exhibited by nearly 50
compounds. This simple structure can be described using a shorter
set of basis vectors, and with fewer atoms per unit cell, than any
other structure, and it can be completely specified by the atom–
atom correlations of only the nearest and next-nearest neighbours.

In this approach, I assert that the geometric simplicity of a
structure is an indicator of its likelihood. The approach proceeds
as follows. First, I enumerate all possible structures (countably
infinite) starting with those with the simplest descriptions. Then
I look for their appearance in the experimental literature. Although
the list of structures generated by this counting approach includes
many well-known structures17, it also includes a number of
‘missing’ (as-yet-unobserved) structures—where are they? A likely
candidate may have no experimental manifestation, not because
it is not a solution to the configurational problem, but simply
because it has been overlooked or not yet synthesized. Thus, this
new structure may be an opportunity to fabricate new alloys
or compounds.

Here, I illustrate the approach with a single example: binary
compounds of an f.c.c. lattice. The results of two more examples
indicate the generic nature of the approach. The combinatorial
algorithm for counting is described in refs 18,19 and in the Methods
section. Enumerating all structures of the type A1−xBx, we find
only 17 with 4 or fewer atoms per unit cell, as shown in Fig. 1.
Among the infinite number of possible f.c.c. structures, these are
the simplest. Of these 17 structures, 9 are found experimentally,
whereas 8 have not yet been observed—we are left to question why.
Are such structures unlikely to exist generally? Or is it just the case
that they have not yet been fabricated or recognized17?

The structures that have not been observed fall into two
subclasses, those which have been predicted to exist and those
for which no predictions have been made (yellow and purple
shading, respectively, in Fig. 1). Armed with this information, we
can now compare those that exist with those that are suspected
to exist, and with those for which nothing is known, to make
concrete arguments about why some of the ‘candidate’ structures
may actually be physically realizable and why some may not be.

The key, the operating principle, it turns out is as follows: in
essence, structures that have known prototypes strongly favour,
at each bond length, just one type of bond, either unlike bonds
(bonds between A and B atoms) or like bonds (A–A/B–B bonds).
Depending on the nature of the A and B atom chosen for a
particular binary system, chemistry will dictate that either like or
unlike bonds are stronger (that is, energy lowering). Depending
on the atoms involved, either kind of bonding can be energy
lowering and thus either can lead to compound formation, but one
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Figure 1 All 17 geometrically possible structures with four or fewer atoms. Of these 17 structures, 9 are well-known intermetallic structures. The other 8 have never
been observed (shaded purple), but 3 have recently been predicted (shaded yellow). Structures are labelled by their common Strukturbericht names if assigned, otherwise by
their common prototype in the case of NbP and MoPt2 structures. Stacking sequences and directions are indicated for the 15 structures that can be so described. Predicted
structures are labelled by quotes and named after their predicted prototype system.

kind will be more favourable. Structures whose geometry results
in a ‘random’ distribution of like and unlike bonds will not be
stable because chemistry dictates that either one or the other is
energetically more favourable, for a given choice of atoms, but not
both simultaneously.

The approach is best illustrated with an example. Imagine
the following typical scenario. In an intermetallic compound,
chemistry often favours unlike bonds between nearest-neighbour
atoms but favours like bonds for next-nearest neighbours. In other
words, unlike bonds are attractive (energy lowering) in the first
‘shell’ and like bonds are more energy lowering in the second shell.
For the f.c.c. lattice, each atom has 12 nearest neighbours in the first
shell and 6 second-nearest neighbours in the second shell. Because
of geometrical ‘frustration’, it is impossible to arrange atoms to
achieve more than 8 out of 12 A–B bonds in the first-nearest-
neighbour shell. (See Fig. 2.) But it is possible to achieve 6 out of
6 A–A or B–B bonds in the second shell. It is interesting to note
that the CuAu structure (L10), shown in the upper left in Fig. 1 and
in Fig. 2, has the maximum possible number of nearest-neighbour
unlike bonds (8/12) and next-nearest neighbour like bonds (6/6),
and then to note how common that structure is—the L10 structure
occurs in about 50 intermetallic compounds. Similarly, the L12

structure shown in the upper right of Fig. 1 has 6/12 nearest-
neighbour unlike bonds and maximizes the number of next-nearest
neighbour like bonds—and it occurs in about 200 compounds.

To summarize the discussion to this point: a geometric counting
approach to enumerating possible unit cells, starting with the
smallest first, suggests possible new crystal structures. Then, these
can be further sorted according to bonding configurations of the

individual structures. Structures that have bonding configurations
that deviate the most from a random configuration are the most
likely to have a physical manifestation—irrespective of whether
they favour like or unlike bonds at a particular bond distance.

This deviation from a purely random configuration can be
quantified simply, as shown in Fig. 3. This figure shows the ‘average
bond type’ for each bond length, for each of the 17 structures.
Describing an unlike bond (A–B) by −1 and like bonds (A–A/B–B)
by +1, we can sum over all the bonds in a structure and take
the average at each bond length (nearest-neighbour, next-nearest
neighbours and so on). With this description of bonds, a purely
random configuration of atoms on the lattice will have a bond
average of (2x −1)2, where x is the concentration of B atoms in an
A1−xBx compound. The deviation is simply the difference between
the average bond type for a particular structure and the average
bond type for a random configuration of the same concentration.
In the upper left of Fig. 3, we can see that the nearest-neighbour
bond average is −1/3 for the L10, the smallest possible value
allowed by geometry. Similarly, the next-nearest neighbours bond
average is +1, the maximum possible value and the maximum
possible deviation from a random configuration (for which the
bond average would be zero as x = 1/2).

Taking all of the relevant bond lengths in aggregate gives a
single measure of a structure’s deviation from the random case.
The total bond average is just the absolute value of the deviations
averaged over a range of bond lengths. Figure 4 shows the averaged
deviation of each of the 17 structures taken over the first 10
bond lengths. This total deviation yields a simple measure of each
structure’s relative likelihood. The general result agrees strongly

942 nature materials VOL 6 DECEMBER 2007 www.nature.com/naturematerials

© 2007 Nature Publishing Group 

 



LETTERS

–1.0

–0.5

0

0.5

1.0

1st 2nd 3rd 4th 5th 6th
Neighbour

Av
er

ag
e 

bo
nd

 ty
pe

a b

c

Figure 2 The average bond type for the L10 structure. a, The average bond type for the first 6 shortest bond lengths. b, At the nearest-neighbour distance, the central
atom has 12 bonds forming 8 unlike bonds and 4 like bonds. As all atoms in this structure have the same nearest-neighbour environment, the central atom is representative
of all atoms. Thus, the average nearest-neighbour bond type is−8/12+4/12=−1/3. c, At the second-nearest-neighbour distance, the central atom has 6 bonds, all like.
Again, as all atoms in this structure have the same environment, the average second-nearest-neighbour bond type is the same for each atom, so the global average is
+6/6= +1.
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Figure 3 Deviations of bond averages. The horizontal axis of each plot
corresponds to the first 6 nearest-neighbour distances. The vertical bars
represent the deviation for each bond length. Negative values indicate a majority of
unlike bonds, positive values like bonds. Structures that have been observed
experimentally have light blue backgrounds, predicted but as-yet-unobserved
structures yellow and never-observed or predicted structures have
purple backgrounds.

with our observations—the likelihood measures of structures of
known compounds are high, but low for unobserved structures.
Even more compelling is the likelihood measures of predicted
but as-yet-unobserved structures. They lie intermediate between
the two extremes, suggesting that the predictions may actually be
verified with experimental effort.

Two more interesting points emerge from examination of Fig. 4.
One is the high relative likelihood of one structure that has not
yet been observed or even predicted. The structure is an A2B2

[111]-stacked structure. This is a starting point for predicting
or experimentally discovering a new structure. Also interesting is
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Figure 4 Likelihood measures (total bond averages) for each compound,
ranked in descending order. The colour scheme is the same as that in Fig. 3. In
general, structures with high likelihood measures correspond to those that have
known physical manifestations, whereas structures that have never been observed
or predicted to exist have the lowest measures. Predicted but as-yet-unobserved
structures lie in between.

the ‘CdPt3’ structure that was inferred based on a data mining
technique7. A recent direct enumeration study concluded that
among essentially all possible f.c.c.-based structures, this structure
is indeed the stable one in at least two systems, Cd–Pt and Pd–Pt
(ref. 20).

Two further examples illustrate the generic nature of this
approach. Figure 5 shows the case of binary body-centred-
cubic (b.c.c.)-based compounds. Again, the same general
pattern emerges—observed structures have the highest likelihood
measures, those that are not have the lowest; predicted structures
lie in between. Next, consider Pt8X1-type compounds21. About a
dozen of these compounds have been observed but all have the same
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Figure 5 Likelihood measures for b.c.c.-based structures with four atoms per
cell or fewer. The colour scheme is the same as that in Fig. 3. The general trend is
the same as for the f.c.c.-based structures.

structure. Combinatorics reveals 14 possible f.c.c.-based structures
that have 9 atoms/cell. Of these, the observed structure has the
highest likelihood measure—it is the structure that deviates most
from a random configuration, and it is this structure that appears
over and over again in 8:1 intermetallic compounds.

The operating principle of this geometric approach is simply
an extremum principle—the stability of a structure is the result of
minimizing the energy (or free energy). Selecting structures with
maximum deviation from a random configuration is synonymous
with finding an extremum of the energy—doing so maximizes the
number of energy-lowering or energy-raising bonds. In this way,
the approach is conceptually parallel to that of the ‘interaction
approach’ of Ducastelle22, Ceder and co-workers23 and others24–26,
where the total energy can be expressed as a sum over short-range
interactions. In that approach, the likely structures are predicted
for all possible values of a few short-range interactions, whereas
this geometric approach implicitly considers a larger number
of interactions. Although the scope of the former is somewhat
narrower, the two methods do make largely coincident predictions
in the area where their range of applicability overlaps.

Whether a high-likelihood-index structure minimizes or
maximizes the energy depends on the ‘chemistry’, the type of
interactions, of a particular case. For one choice, a structure’s
energy may be a minimum, but in others a maximum. This is
evident in comparing the L10 and B11 structures in Figs 3 and
4—each has a high likelihood index, but the conditions under
which L10’s energy will be minimized are nearly opposite those
for B11 and vice versa. Thus, this approach finds new candidate
structures in a chemistry-independent way.

This approach infers the possible existence of new structures
on the basis of their geometric simplicity. The difference between
modern-day heuristic methods and this approach is that the
former predict new compounds, whereas this approach suggests
new structures. In addition to the three examples given, the
approach could be immediately applied to other important systems
such as hexagonal close-packed (h.c.p.)-based binary compounds,
polynary systems and cases of larger unit cells. Roughly speaking,
there are about 1,500 binary intermetallic systems (most of which
are f.c.c.-, b.c.c.- or h.c.p.-based) and about 50 times as many
ternary systems. A comprehensive first-principle-based search of
possible crystal structures for all these systems is not yet feasible
but this approach provides a powerful starting point.

METHODS

RELATIVE LIKELIHOOD
Following is one final note about Figs 4 and 5. The computed total bond
averages—the relative likelihood index—was computed by using all bonds up
to the tenth-nearest neighbour. This is an arbitrary cutoff—we could use a
longer or a shorter cutoff. And, it could also be argued that long-range bonds
should contribute less to the total energy of the crystal than the short-range
bonds. In fact, only a finite number of bonds are unique in each structure, so a
cutoff can be rigorously defined27.

However, in reality, the important features of Figs 4 and 5 and the ensuing
conclusions are unaltered by the choice of cutoff or whether or not
shorter-ranged bonds are given heavier weight in computing the average. Thus,
the results of this analysis are independent of the details of how the bond
average is computed.

In the case of the Pt8X1 compounds, the small concentration of X atoms
results in a more open structure that necessarily requires a longer cutoff to
capture the essential chemistry. One structure has a likelihood index close to
that of the physically observed structure. This other structure should probably
be considered in the data mining approach and other ‘survey’-type
ground-state searches.

STRUCTURE ENUMERATION
The details of the structure enumeration algorithm will be given in a
forthcoming article but are outlined here. The first step generates all
superlattices of a given parent lattice by enumerating all Hermite normal form
matrices in order of ascending determinant sizes, as described in refs 18,19. The
resulting superlattices are then reduced to a symmetrically inequivalent list
using the point group of the parent lattice. Next, all possible atomic orderings,
for each volume (determinant size), can be generated. This can be done using
well-known combinatorial arguments by recognizing that there is an
isomorphism between the quotient group of the superlattice and the direct sum
of cyclic groups of the Smith normal form corresponding to each Hermite
normal form matrix.

STRUCTURAL ASSOCIATIONS
Some of the structures shown in Fig. 1 can be assigned to different parent
lattices depending on c/a ratios, internal coordinates and so on. For example,
the physical prototypes of C6 and C11b are h.c.p.- and b.c.c.-like respectively.
But these are isotypic with the f.c.c. case and f.c.c.-like predictions have also
been made.
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