
Author's personal copy

Generating derivative structures at a fixed concentration

Gus L.W. Hart a,⇑, Lance J. Nelson a, Rodney W. Forcade b

aDepartment of Physics & Astronomy, Brigham Young University, Provo, UT 84602, USA
bDepartment of Mathematics, Brigham Young University, Provo, UT 84602, USA

a r t i c l e i n f o

Article history:
Received 17 November 2011
Received in revised form 7 February 2012
Accepted 9 February 2012

Keywords:
Alloys
Cluster expansion
Derivative structures
Enumeration
Ag–Pt
Silver–platinum

a b s t r a c t

We present an algorithm for generating derivative superstructures for large unit cells at a fixed concen-
tration. The algorithm is useful when partial crystallographic information of an ordered phase is known.
This work builds on the previous work of Hart and Forcade [Phys. Rev. B 77 224115, 2008; Phys. Rev. B 80
014120, 2009]. This extension of the original algorithm provides a mapping from atomic configurations to
consecutive integers when only a subset (fixed concentration) of all possible configurations is under con-
sideration. As in the earlier algorithm, this mapping results in a minimal hash table and perfect hash
function that enables an efficient method for enumerating the configurations of large unit cells; the
run time scales linearly with the number of symmetrically-distinct configurations. We demonstrate the
algorithm for a proposed structure in the Ag–Pt system comprising 32 atoms, with stoichiometry
15:17, a configuration space of !400,000.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

The task of predicting the thermodynamically-stable structure
of a material based on first-principles calculations has been an
exciting prospect in computational materials science for many dec-
ades. The longevity of the problem stems from its potential impact,
despite its difficulty. The problem is challenging because of the
enormity of the search space—the sheer number of competing
structures—and because of the relative high cost of computing
first-principles energies. Algorithms for efficiently exploring crys-
tal structure space and finding candidate minima are rich and var-
ied. The general crystal structure prediction problem (CSP) has
been discussed and reviewed in a number of other Refs. [1–10].

In this paper, we focus on a subset of CSP problems, the problem
of predicting crystal structure when the underlying lattice is
known. This narrower problem—the lattice decoration problem—
is also an important one. Many of the ordered structures observed
in intermetallic and semiconductor alloys are structures of this
type. Codes for generating such derivative structures have been in
existence for some time [11–15]. The list of derivative structures
generated by these codes are frequently used to perform exhaus-
tive searches for thermodynamically-stable phases.

Generating a complete list of symmetrically-distinct derivative
superstructures, for an arbitrary parent lattice, can be done effi-
ciently using permutation groups and an integer representation

of the superstructures [16,17]. The purpose of this paper is to ex-
tend the original algorithm of Refs. [16,17] to cases where, instead
of enumerating all derivative superstructures, only those of a cer-
tain stoichiometry are generated.

There are practical computational materials science problems
where the stoichiometry is naturally limited but the number of
sites in the unit cell is large. In these cases, the original algorithm
cannot be used because of the combinatorial explosion of
configurations.

For example, one important class of lattice decoration problems
is materials whose compositions are constrained by charge-neu-
trality considerations. When stoichiometric zirconia (ZrO2) is
doped with lower-valence cations such as Y3+ or Ca2+, oxygen
vacancies appear on the anion sublattice to maintain charge neu-
trality. Proper simulation of such systems requires unit cells with
large numbers of atoms, which leads in turn to a prohibitively large
number of configurations to consider. However, the concentration
is fixed due to charge neutrality. This means that the actual num-
ber of relevant configurations is far less, but enumerating at a fixed
concentration requires a new algorithm.

Complete enumeration is also impractical for many surface
problems. For example, a binary alloy surface with one type of
adsorbate leads to a quaternary enumeration problem where the
number of configuration grows impossibly fast with increasing cell
size. The old algorithm quickly becomes useless for these types of
problems, but a fixed-concentration algorithm will be effective
when coverages are small or alloy concentration ranges are nar-
row, as is often the case in experiment.

0927-0256/$ - see front matter ! 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.commatsci.2012.02.015

⇑ Corresponding author. Tel.: +1 801 422 7444; fax: +1 801 422 0553.
E-mail address: gus.hart@gmail.com (G.L.W. Hart).

Computational Materials Science 59 (2012) 101–107

Contents lists available at SciVerse ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

Author's personal copy

2. Algorithm recap

Although the details of the original algorithm are given in
Refs. [16,17], we briefly review it so that the reader need not refer
back to those references. In essence, the enumeration algorithm
has two steps: (1) generating unique supercells and (2) generating
unique labelings of those cells (labelings that are distinct under
translational or rotational (orthonormal) symmetries of the parent
lattice).

Step 1 is accomplished by representing each superlattice as an
integer matrix in Hermite Normal Form (HNF), thus avoiding rep-
etitions of the same lattice with different bases. We simply gener-
ate a list of all HNF’s with a given determinant (corresponding to
the size of the supercell). Depending on the rotational symmetries
of the parent lattice however, some of the supercells defined by the
list of HNFs may be equivalent to one another in a physical sense.
These rotation duplicates can be removed by checking the equiva-
lence of each pair of HNFs under each rotation of the parent lattice
(see Fig. 1).

Step 2 begins by generating all possible labelings (atomic con-
figurations) for each unit cell, as illustrated in Fig. 2. We do this
by labeling the elements of the finite quotient group G (lattice over
superlattice)—whose order is the same as the supercell but which
we may think of as a list of elements on a line (as shown in Fig. 2).
We then convert the symmetries of the lattice to a list of permuta-
tions of the group G, and use those permutations to eliminate lab-
elings which are symmetrically equivalent, as illustrated in Fig. 3.

The example of Fig. 2 illustrates the concept. The list of binary
configurations can be converted into a list of consecutive integers
by substituting each label (green1 or red) in each configuration
with the numbers 0 and 1. The resulting binary numbers can be
converted to base 10, forming a table of consecutive integers, as
shown. Depending on the dimension and symmetries of the lattice,
there may be different sets of permutations applied to that list,
determining which labelings can be removed as redundant.

3. Extending the algorithm

The original algorithm generated all possible configurations for a
given number of labels and label types, with repetitions allowed
(four labels of two different types in the preceding examples). To
generate, instead, all possible atomic configurations for a fixed con-
centration is equivalent to generating all permutations of a multi-
set. In the preceding examples, there were nk = 24 = 16 possible
configurations. If on the other hand, we were interested in all 4-
atom permutations of two green and two red atoms (a fixed con-

centration), the multiset is {r, r, g, g} and there are only 4
2

! "
¼ 6

distinct configurations (i.e., permutations).
One might think that the solution to this problem is to use the

same hash table and function from the previous algorithm and
then discard unneeded configurations. This means that the hash ta-
ble would be much larger than necessary, requiring an unsupport-
able amount of memory. To enumerate all binary configurations in
a unit cell of size fifty, for example, would require about 250# one
million gigabytes, far exceeding the capacity of an average com-
puter. In contrast, the hash table needed to enumerate all configu-
rations in a 50 atom cell with concentration fixed at 20:80%
requires only 10 gigabytes of memory. Our objective is a minimal
hash table with consecutive integers and a mapping from each
atomic configuration to its corresponding slot in the table. Such a
hash table would enable us to do fixed concentration enumerations
at much larger unit cell sizes than the original algorithm. 3.1. From configurations to integers

We will describe the algorithm in general terms but simulta-
neously work through an example, enumerating the ‘‘colorings’’

b

c

a

Fig. 1. (a) The 7 Hermite Normal Form (HNF) matrices of size 4, and their
corresponding unit cells. (b) The same superlattices but depicted using the shortest
(most orthogonal) basis vectors. (c) The four symmetrically-distinct superlattices of
the seven. Under rotational symmetries of a square lattice (the parent lattice), the
yellow 4 $ 1 rectangle (vertical) is equivalent to the red one (horizontal), the blue
rectangle is equivalent to the green, and the light blue is equivalent to the purple.

Fig. 2. (a) All possible binary combinations of 4 atoms. Because this is a binary case
with 4 atoms, the total number of combinations is kn = 24 = 16. By substituting the
numbers 0 and 1, for the labels green and red, the combinations can be listed as
sixteen 4-digit binary numbers which in turn can be converted to base 10. This
mapping of configurations onto consecutive integers is a key element in imple-
menting an efficient algorithm. (b) Two of the labelings, 0001 and 0010, applied to
one of the 4-atom cells. By inspection we see that the two are crystallographically
equivalent. The two cases are identical under a translation belonging to the parent
lattice. Converting rotational and translational symmetries to simple permutations
of the labelings makes it possible to quickly identify duplicates in the list of
configurations.

10100 10001

Fig. 3. An example of a labeling that is equivalent to the original under a rotational
symmetry of the parent lattice. On the left-hand side, the original labeling of the
unit cell is 10100 (or grgrr going bottom to top, left to right). The superlattice (unit
cell in black) is equivalent after a 90" rotation, but the labeling is permuted (right
side, 10001, grrrg), so the two labelings represent equivalent structures.

1 For interpretation of color in Figs. 1–7, the reader is referred to the web version of
this article.

102 G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107

Author's personal copy

of a superlattice with four lattice sites. We will represent the col-
orings (i.e., atomic configurations) of the three-dimensional unit
cell using sequences of colors, as shown in Fig. 4. Note that this
does not imply a one-dimensional lattice—the occupancy of sites
in a supercell for a lattice of any dimension can be conveniently
represented by a sequence of colors [18].

In the general case, we have k colors of items with a1 items of
color c1, a2 of color c2, etc. The total number of items in our multi-
set is n = a1 + a2 + % % % + ak. In the example, n = 2 + 1 + 1 = 4 (a1 = 2
and c1 = red; a2 = 1 and c2= blue; and a3 = 1 and c2= green).

The number of permutations of a multiset is the multinomial
coefficient

C ¼
n

a1; a2; . . . ; ak

! "
¼

n!
a1!a2!a3! % % % ak!

¼
n
a1

! "
n& a1
a2

! "
% % %

$
n& a1 & a2 & . . .& ak&1

ak

! "
¼

Yk

i¼1

n& a1 & . . .& ai&1

ai:

! "
ð1Þ

In other words, there are C1 ¼ n
a1

! "
ways to distribute the a1

points of color c1;C2 ¼ n& a1
a2

! "
ways to distribute the a2 points

of color c2 among the remaining n & a1 unoccupied points, and

Ci ¼
n& a1 & a2 & . . .& aði&1Þ

ai

! "
ð2Þ

ways to distribute the ai points of color ci, and C = C1C2 % % % Ck. In the
example of Fig. 4, we have

C ¼ CredCblueCgreen ¼
4
2

! "
4& 2
1

! "
4& 2& 1

1

! "
¼ 6$ 2$ 1 ¼ 12:

Each color (i.e., label or atom type) can be distributed Ci ways.
Let xi represent which of those ways we choose to distribute color
i, indexing from zero, so that 0 6 xi < Ci. Then having indexed each
color distribution in turn, we may index this particular permuta-
tion of our original multiset by the expression

y ¼ f ðx1; x2; . . . ; xkÞ ¼ x1 þ C1ðx2 þ C2ðx3 þ C3ð% % % Ck&2xk&1ÞÞÞ: ð3Þ

Essentially we have created a mixed-radix number where the Ci are
the multipliers and the xi are the digits (i.e., place values). The func-
tion f is a mapping from the set of k-tuples (x1, x2, . . . , xk) (with
0 6 xi < Ci for each i) to the set of integers y in the interval
{0, 1, 2, . . . , C & 1}. The value y indexes our multiset permutations.

But how can we index the single-color distributions? That is,
how do we produce the xi’s in our function above? For each color,

we need to order the possible arrangements of that color among
the remaining slots. We do this by noting that we may identify
each such single-color arrangement as a binary string (0’s and
1’s). The length of each string is m = ai + ai+1 + % % % + ak in which
there are ai ones and m & ai zeros. In Fig. 4, the first color is red

and m = 4 and a1 = 2 so there are 4
2

! "
¼ 6 arrangements of red

atoms and empty slots (and so C1 = 6), as is apparent in the figure.
The standard algorithm for generating the single-color arrange-

ments would be to successively look for the rightmost 1 with a
zero to the right of it, move it one digit to the right, then pull all
other 1’s still to the right of it down against it. For example,
01001 would change (since the second one can be moved) to
00110. In the example, considering the red first, we have two ones
and two zeros. We start with 1100 and proceed as follows.

1100
1010
1001
0110
0101
0011

We generate the xi’s using a series of binomial coefficients. To
compute the binomial coefficients, take each 0 which has 1’s to

the right of it, and associate the binomial coefficient p
q& 1

! "
,

where p is the number of digits to the right of it and q is the num-
ber of 1’s to the right of it. Add all the coefficients, the result is xi.
What we’re doing, in effect, is counting the number of configura-
tions which precede the given one in our list—by counting how
many would have the same digits to the left and a 1 (instead of a
zero) in the current position.

To illustrate, here are two examples using Fig. 4. Consider the
placement of the red atoms. The index for 0101 (numbers 4 and
10 in the figure) would be

xred ¼
3
1

! "
þ

1
0

! "
¼ 4

because with have one 0 with two 1’s to the right (so p = 3 and
q & 1 = 1) and one 0 with one 1 to the right (so p = 1 and
q & 1 = 0). Similarly, the index for 0110 is

xred ¼
3
1

! "
¼ 3

because we have only one 0 with two 1’s to the right.
As a complete example of how a configuration is mapped to an

integer, take the configuration, (numbered as 10 in
Fig. 4). Recall that at the beginning of the section, we already deter-
mined Cred = 6, Cblue = 2; for green Cgreen = 1. For red, the binary

string is 0101 so xred ¼ 3
1

! "
þ 1

0

! "
¼ 3þ 1 ¼ 4. For blue, there

are two slots left; the binary string is 01 so xblue ¼
1
0

! "
¼ 1. So,

the index of the configuration is
y ¼ xred þ Credxblue ¼ 4þ 6ð1Þ ¼ 10: ð4Þ
Note from Eq. 3 that xgreen is not needed. There is only one way to
place the last color so it contributes nothing to the index y.

3.2. From integers to configurations

We also need the algorithm to work in reverse, to convert base-
10 integers into configurations. The approach is shown diagram-
matically in Fig. 5. One begins by first finding the xi’s. This is done
by taking the index of the configuration (y in Eq. 3) and dividing it
successively by the Ci’s. Using the example of Fig. 4 again, take con-

Fig. 4. The four-atom ternary configurations for a fixed concentration. Note that,
because the concentration is fixed in this case, a simple extension (to base-3
numbers) of the hash table example given in the introduction does not result in
consecutive integers. To utilize the group-theoretic approach for a fixed-concen-
tration case, a new hashing scheme is required.

G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107 103

Author's personal copy

figuration number 9. Divide 9 by C1 = 6. The quotient is 1 and the
remainder is 3. So xred = 3. Now take the quotient, 1, and divide
by C2 = 2. The quotient is 0 and the remainder is 1. So xblue = 1.
x3 = 0 because there is always only one way to place the atoms of
the last color (regardless of their multiplicity).

Now that we have the xi’s, we need to convert each into the
respective single-color configurations. As before, we will use a bin-
ary string representation, 1’s for positions occupied by the current
color and 0’s for positions still empty. For the i-th color, there will
be m = n & a1 & a2 & % % % & ai&1 available positions and ai of those
positions will be occupied by 1’s. Note that given the index number
xi for a string of length m with ai ones, there will be a zero in the

first (left) position iff m& 1
ai & 1

! "
6 xi. Thus we may proceed, by a

sort of greedy algorithm to determine whether each position con-
tains a 1 or 0. In the latter case, subtract the binomial coefficient
from the current index number and proceed. In other words:

Given xi, m and ai:

1. Let I = xi, t = ai and ‘ =m. (Now I, t and ‘ will be altered in the
algorithm, but not xi, ai or m.)

2. If ‘& 1
t & 1

! "
6 I then let the (m + 1 & ‘)th digit of our string be 0

and let I ¼ I & ‘& 1
t & 1

! "
; otherwise, let the digit be 1 and set

t = t & 1
3. Let ‘ = ‘ & 1. If ‘ > 0, return to step 2; otherwise set all remaining

digits to 0 and terminate.

As an illustration, consider the configuration number 9 in Fig. 4:

* I = xred = 3 (as determined at the end of the previous section)
and t = ared = 2, ‘ =m = 4.

* Now ‘& 1
t & 1

! "
¼ 3

1

! "
¼ 3, which is 6I = 3 so we set the first

digit to 0 and set I = I & 3 = 0 and ‘ = ‘ & 1 = 3.‘ > 0 so return to
step 2 again.

* ‘& 1
t & 1

! "
¼ 2

1

! "
¼ 2, which is not 6I = 1, so we set the second

digit to 1 and set t = t & 1 = 1 and ‘ = ‘ & 1 = 2. ‘ > 0 so return
to step 2 again.

* ‘& 1
t & 1

! "
¼ 1

0

! "
¼ 1, which is not 6I = 0, so we set the third

digit to 1 and set t = t & 1 = 0 and ‘ = ‘ & 1 = 1. ‘ > 0, so return
to step 2.

* For the last digit for the reds, ‘& 1
t & 1

! "
¼ 0

&1

! "
¼ 0, which is

6I = 0, so we set the last (fourth) digit to 0.
xred = 3? 0110) .

* Next, find xblue. There are two empty slots remaining and one
blue atom. I = xblue = 1 (from the end of the previous section)
and t = ablue = 1, ‘ =m = 2.

* For the first digit of the blue configuration,
‘& 1
t & 1

! "
¼ 1

0

! "
¼ 1, which is 6I = 1 so we set the first digit

to 0 and set I = I & 1 = 0 and ‘ = ‘ & 1 = 1.

* For the second (final) blue digit, ‘& 1
t & 1

! "
¼ 0

0

! "
¼ 1, which is

not 60 so the second digit should be a 1. That is,

xblue = 1? 01)
* There is only one way (regardless of multiplicity) to place the
final color. So green goes in the single remaining slot.

*

4. Application

Here we illustrate the application of the algorithm by a real-
world example. In 1996, Durussel and Feschotte re-examined the
Ag–Pt phase diagram in an effort to confirm previously-claimed
phases that were somewhat surprising. Their rather extensive
work resulted [19] in a significant redrawing of the phase diagram
and, in contrast to previous work, they found that there was only
one stable ordered-phase.

Fig. 5. Flow diagram of the algorithm discussed in Section 3.2.

104 G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107

Author's personal copy

That ordered phase was reported to have a stoichiometry of 53
at.% Pt, and X-ray analysis of a sample containing this new phase
indicated only one lattice parameter value larger than the fcc lat-
tice parameter. The lattice parameter value was !8.0 Å, approxi-
mately twice the value of the fcc phases. Consequently, the
authors conjectured that the unit cell of the new phase was a 32-
atom supercell (a 2 $ 2 $ 2 multiple of the conventional fcc cell)
with the surprising stoichiometry of 15:17. They were unable to
further characterize the structure of the new phase.

If one could rapidly compute the energy of a configuration (via a
cluster expansion or other fast Hamiltonian), then one could take
the list of all distinct 15:17 configurations inside the conjectured
unit cell, calculate an energy for each one, and quickly determine
which was most stable (and presumably the experimental struc-
ture). With the original enumeration algorithm, this is not practical
because one must enumerate all symmetrically-distinct configura-
tions (of all concentrations) in the cell. But for this case we only
need the subset with stoichiometry 15:17. In the original algo-
rithm, this requires us to reduce the long 232 # 1010 list of config-
urations to the symmetrically-distinct set. With the new algorithm,

we need only reduce a list of 32
17

! "
5$ 108, 20 times smaller.

In the former case, the algorithm is at the memory limit of a
typical computer (!10 gigabytes). Additionally, the full enumera-
tion would have required nearly 1 week of cpu time. Saving a factor
of 20 removes the memory constraint and also speeds up the enu-
meration considerably. In the more typical cases discussed in the
Summary, the differences between the full enumeration and con-
centration-restricted enumeration will be even larger.

The number of symmetries of the 32-atom unit cell is
48 $ 32 = 1536 (translations and rotations) so the starting list of
configurations is reduced by almost this factor, leaving only about
400,000 symmetrically-distinct configurations. Using a cluster
expansion constructed from about 50 first-principles calculations,
we explored this set of structures using the enumerated list and
found the lowest one, shown in Fig. 6. From a physical point of
view, the final answer is not too surprising. The cell bears a strong
resemblance to the L11 structure of Cu–Pt.

Guided by the cluster expansion predictions, we used direct
first principles calculations to check larger unit cells, including that
shown in Fig. 6. Both first principles and cluster expansion indicate
that, in contradiction to Ref. [19], there are no structures at 15:17

stoichiometry that are stable with respect to a two-phase mixture
of the L11 structure and a Pt-rich solid solution. Further evidence
that L11 is the stable phase is given by the fact that all the low-ly-
ing 15:17 structure predicted by cluster expansion are essentially
the L11 structure with anti-site defects (e.g., take note of the L11-
like nature of the structure in Fig. 6).

One might suspect that the structure in Fig. 6 is stabilized by
vibrational entropy, but our extensive calculations of the phonon
density of states reveal that our original finding (L11 is stable,
15:17 is not) is strengthened by including vibrational entropy ef-
fects. Furthermore, a symmetry-leveraged method[10] combined
with GULP calculations found the same lowest-energy structure
at 15:17 and the same result—L11 is a ground state, the structure
at 15:17 is not. A full exposition of our Ag–Pt follow-up study will
be discussed in another publication.

5. Summary

Our previous algorithm[16,17] enumerated derivative super-
structures over the entire composition range. Because the total
number of structures is a rapidly increasing function of cell size
and number of atom types, there are practical limitations to its
application. For example, in fcc- or bcc-based binary systems, it
was impractical to go beyond cell sizes of about 28 atoms/cell. In
ternary systems the limit is about 16 atoms/cell. Although these
sizes are sufficient for many cases, there are other cases where
the ability to enumerate larger cell sizes and in a narrow concen-
tration range would be useful.

We developed an extension to the original algorithm that can
limit the enumeration to a single composition.[20] This can be
used to explore a limited concentration range in much larger unit
cells. In our example of Ag–Pt, we enumerated all configurations
for a fixed stoichiometry of 15:17. Cases like Ag–Pt where the com-
position of an unknown phase is known but other structural infor-
mation is not are not uncommon in the alloy phase diagram
literature and this algorithm is especially useful in these cases. An-
other common case where one may want to enumerate much lar-
ger cells (but where the total numbers of unique configurations is
not impractically large) is the case of the dilute limit. With the new
algorithm, for cubic or hexagonal binary alloys, one could easily ex-
plore unit cell sizes up to 64 or so if the composition is below 5% or
6%.

In the original algorithm, a key component for efficiency was
the construction of a hash table and hash function, a common con-
struct in computer science. In a list of all possible atomic configu-
rations, the hash function mapped configurations onto consecutive
integers. In this extension of the original algorithm, a new hash
function is developed that maps permutations of atomic configura-
tions (for a fixed concentration) onto consecutive integers. This
extension is incorporated into the original code which is available
for download [21].

Appendix A

A.1. Including site restrictions

As mentioned in the introduction, the user may wish to impose
site restrictions as well as composition restrictions. Cases arise where
the materials problem at hand dictates that some atom types will
only occupy a subset of the sites. One obvious solution to joint site-
composition restrictions is to generate the list of all configurations
that satisfy the concentration restrictions and then, in a post-pro-
cessing step, delete those that violate the site restrictions. How-
ever, the unrestricted list may be prohibitively long or take too
much cpu time to generate. The site restrictions may substantially

Fig. 6. The lowest-energy 32-atom Ag–Pt structure with 15:17 stoichiometry. Note
that this structure is similar to the prototype CuPt structure (L11), which has
alternating (1 1 1) planes of pure Pt and pure Ag. The only difference between L11

and the structure shown here is the presence of Pt ‘‘substitutional defects’’ in the Ag
planes (indicated by the green plane), shown on the corners of this 2 $ 2 $ 2
supercell.

G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107 105

Author's personal copy

reduce the size of the list—even by orders of magnitude—and we
wish to take advantage of this reduction a priori. How can one gen-
erate a list of configurations simultaneously subject to both site
and composition restrictions?

In the absence of site restrictions, all valid configurations can be
generated simply by iterating over all the integers between 1 and
C, where C is the total number of combinations, as given by the
multinomial in Eq. 1. The one-to-one mapping between the inte-
gers and configurations (using the algorithm discussed in Section
3) enables efficient ‘‘crossing out’’ of symmetrically-equivalent
configurations because it constitutes a minimal hash table and a
perfect hash function.

In the case of both site restrictions and specified multiplicities
(composition restrictions), we will continue to use the same hash
table (no longer minimal) and hash function (still perfect) but re-
quire a more efficient way to generate the configurations that sat-
isfy the restrictions. We adapt a tree search to generate all legal
configurations.

The example shown in Fig. 7 illustrates the approach. We enu-
merate all ternary colorings of four sites, subject to the site restric-
tions that red cannot appear on site 4, green cannot appear on site
1, blue cannot appear on site 3. The composition restriction re-
quires that red always appear once or twice, green no more than
once, and blue no more than twice. The composition and site
restrictions can be given as a set of ‘‘masking matrices’’, as shown
in the figure.

We use a standard backtracking algorithm to search the tree of
site-restricted colorings to find those which also satisfy the multi-
plicity requirements. The efficiency of the tree search is realized by
skipping entire groups of colorings that are disallowed. For exam-
ple, the top branch at the first level of the tree violates the site
restriction that green is not allowed on site 1. The backtracking
algorithm thus skips all subsequent sub-branches.

Similarly, composition restrictions are enforced by checking the
total number of each color at each node of the tree. When a viola-
tion is encountered, all subsequent sub-branches will also be in
violation and can be skipped. After the tree is searched, we index
the list of remaining, viable colorings by using our hash function.

A.2. Counting the multiset permutations

We may sometimes wish to count the number of configurations
with the given multiplicities, when it simply is not practical to list
them all or when checking the implementation of the algorithm.

In other words, we would like to be able to count the number of
functions from the lattice quotient group to the set of available col-
ors, subject to a restricted set of multiplicities with equivalence in-
duced by the full set of symmetries. Note that if we were only
interested in the symmetries induced by translation—i.e., by the
quotient group itself—there is a very elegant solution due to Ruth-
erford [22] using Pólya’s Theorem. Because we include the ortho-
normal symmetries, our problem is uglier and not easily
summarized in a formula.

It is still a Pólya problem, however. Given the full symmetry
group of the lattice and superlattice, expressing those as permuta-
tions of the quotient group, we may proceed as follows: Our goal is
to find the average number of colorings, with the given multiplic-
ities, which are fixed by elements of the group. Since a coloring is
fixed by a group element if and only if the cycles of the permuta-
tion are monochromatic, we must, for each group element, deter-
mine how many colorings with the given multiplicities are
monochromatic on the cycles of the permutation.

First, we find the cycle structures of the permutations and col-
lect them into groups with similar structures—so the following
computation need be done only once for each distinct cycle
structure.

Now suppose a permutation q has cycles of length
c1 < c2 < % % % < ct with multiplicities m1,m2, . . . ,mt respectively (soP

mici ¼ n, the order of our quotient group). Suppose also that
we wish to use colors 1, 2, . . . , k with multiplicities a1, a2, . . . , ak

Fig. 7. Tree diagram of a sample enumeration of configurations. Branches that are
‘‘pruned’’ because they violate site restrictions are indicated by dashed red arrows.
Branches that are eliminated because they violate composition restrictions are
shown by dashed blue arrows. Legal colorings generated by the backtracking
algorithm (9 out of 34 = 81) are circled.

106 G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107

Author's personal copy

respectively (so
P

ai ¼ n). Then the number of colorings with the
given color-multiplicities, which are fixed by q, is

X

M2xðqÞ

Yt

i¼1

ci
Mi1;Mi2; . . . ;Mi;k;

! "

where x(q) is the set of all t $ k matrices M of non-negative inte-
gers satisfying the following simultaneous conditions

ð+Þ
Xk

j¼1

Mi;j ¼ mi; 8i;

ð++Þ
Xt

i¼1

ciMi;j ¼ aj; 8j:

Finding the matrices in x(q) is an easy ‘‘brute force’’ problem be-
cause the entries in M can be easily and severely bounded by the
requirements of equations (⁄) and (⁄⁄). Note that Mij represents
how many of the cycles of length ci are colored with color j.

Using Maple, we applied this counting algorithm to many small
problems where we could compare the answer to our enumeration
algorithm. In all such cases, it instantly gave the correct answer.
Then, merely to test its speed, we applied the counting algorithm
to a superlattice of size 48 over the FCC parent lattice. The answer,
a nineteen-digit decimal number, required only five minutes in
Maple—but was obviously beyond the reach of any enumeration
algorithm.

References

[1] S.M. Woodley, R. Catlow, Nature Materials 7 (2008) 937.
[2] J.C. Schön, M. Jansen, Zeitschrift für Kristallographie 216 (2001) 307.

[3] C. Mellot-Draznieks, S. Girard, G. Férey, J.C. Schön, Z. Cancarevic, M. Jansen,
Chemistry – A European Journal 8 (2002) 4102. ISSN 1521-3765.

[4] D.J. Wales, J.P.K. Doye, The Journal of Physical Chemistry A 101 (1997) 5111.
<http://pubs.acs.org/doi/pdf/10.1021/jp970984n>.

[5] R.L. Johnston, Dalton Transactions (2003) 4193–4207.
[6] N.L. Abraham, M.I.J. Probert, Physical Review B 73 (2006) 224104.
[7] A.R. Oganov, C.W. Glass, The Journal of Chemical Physics 124 (2006) 244704.
[8] J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal, V. Caignaert, Nature 346

(1990) 343.
[9] A. Fadda, G. Fadda, Physical Review B 82 (2010) 104105.
[10] Bryce Meredig and Chris Wolverton recently developed a genetic algorithm-

based crystal structure prediction approach that leverages incomplete
symmetry information provided by X-ray analysis <http://meetings.aps.org/
link/BAPS.2011.MAR.W32.2>.

[11] A. van de Walle, G. Ceder, Journal of Phase Equilibria 23 (2002) 348.
[12] A. van de Walle, M. Asta, G. Ceder, CALPHAD 26 (2002) 539.
[13] L.G. Ferreira, S.-H. Wei, A. Zunger, The International Journal of Supercomputer

Applications 5 (1991) 34.
[14] N.A. Zarkevich, T.L. Tan, D.D. Johnson, Physical Review B (Condensed Matter

and Materials Physics) 75 (2007) 104203. pages 12.
[15] A body of work by M. Hosoya is related to our enumeration problem. Hosoya’s

algorithm enumerates all possible crystal structures of any parent lattice of
which derivative structures are a subset. Though this approach is not useful for
the normal applications of derivative structures, interested readers may wish
to consult Ref. [23] and its preceding works.

[16] G.L.W. Hart, R.W. Forcade, Physical Review B 77 (2008) 224115.
[17] G.L.W. Hart, R.W. Forcade, Phys. Rev. B 80 (2009) 014120.
[18] The positions in the sequence can be mapped directly back to their atomic

positions in the three-dimensional lattice using the Hermite Normal Form
matrix that defines the superlattice.

[19] P. Durussel, P. Feschotte, Journal of Alloys and Compounds 239 (1996) 226.
[20] Configurations for composition ranges can be enumerated by applying the

algorithm repeatedly to several concentrations. The enumeration code <http://
sourceforge.net> includes this functionality [21].

[21] A FORTRAN95 implementation of the original algorithm of Refs. [16,17],
incorporating the extensions discussed in this paper <http://sourceforge.net/
projects/enum/=>.

[22] J.S. Rutherford, Acta Crystallographica Section A 51 (1995) 672.
[23] M. Hosoya, Bulletin of the College of Science, University of the Ryukyus 44

(1987) 11.

G.L.W. Hart et al. / Computational Materials Science 59 (2012) 101–107 107

