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Chemical bonding, elasticity, and valence force field models: A case study fora-Pt2Si and PtSi
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We have carried out a detailed study of the chemical bonding for two room-temperature stable platinum
silicide phases, tetragonala-Pt2Si and orthorhombic PtSi. An analysis of the valence electronic charge density
reveals surprising evidence of covalent three-center bonds in both silicide phases, as well as two-dimensional
metallic sheets ina-Pt2Si. These elements of the bonding are further analyzed by constructing valence force
field models using the results from recent first principles calculations of the six~nine! independent, nonzero
elastic constants ofa-Pt2Si ~PtSi!. The resulting volume-, radial-, and angular-dependent force constants
provide insight into the relative strength of various bonding elements as well as the trends observed in the
elastic constants themselves. The valence force field analysis yields quantitative information about the nature
of the chemical bonding that is not easily discernible from the more qualitative charge density plots. More
generally, this study demonstrates that the detailed variations in the elastic constants of a material contain
useful information about the chemical bonds that can be extracted using valence force field models. Inversely,
these models also allow for identification of specific elements of the chemical bonding with particular trends in
the elastic constants, both within a given material and among a class of related materials.

DOI: 10.1103/PhysRevB.64.155110 PACS number~s!: 61.50.Lt, 62.20.Dc
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I. INTRODUCTION

Deposition of metallic platinum silicide compounds o
silicon substrates leads to the formation of rectifying jun
tions, with a Schottky barrier of 220–240 meV~for holes! in
the case of orthorhombic PtSi onp-type Si ~001!.1,2 This
energy matches an important atmospheric ‘‘transpare
window’’ in the infrared region, making these materials w
suited to infrared detector applications. PtSi has also b
discussed as a promising candidate to replace Ti2Si in poly-
silicon interconnect applications in sub-half-micro
technologies.3–5 In light of these and other technological a
plications, as well as a general paucity of earlier treatme
of the fundamental properties of the platinum silicides, th
have been two recent in-depth studies of the atomic and e
tronic structures of two room-temperature stable platin
silicide phases, tetragonala-Pt2Si and orthorhombic PtSi
Becksteinet al.6 have carried out an extensive set of fir
principles electronic structure calculations for both materia
In addition to the electronic structure, they have calcula
all of the equilibrium structural parameters and zero-press
elastic constants for both phases. Francoet al.7,8 used a com-
bination of photoelectron spectroscopy, soft x-ray emiss
spectroscopy, and x-ray absorption spectroscopy to study
detailed electronic structure of orthorhombic PtSi. First pr
ciples calculations of the partial density of states were a
carried out in order to aid in interpreting the experimen
spectra.

The present study is complementary to these two ea
treatments and makes contact with them in a number
ways. The combination of the atomic and electronic struct
gives rise to the chemical bonding of a material. The ela
constants and the various experimental spectroscopies re
the details of this bonding but they do so indirectly. One
the goals here is to directly elucidate the fundamental na
0163-1829/2001/64~15!/155110~15!/$20.00 64 1551
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of the chemical bonding in the two silicide phases stud
previously. Towards that end we have calculated and a
lyzed the valence electronic charge density for both silicid
However, this analysis is only qualitative and thus we ha
made further attempts to gain a more quantitative und
standing. The previous first principles study noted a num
of interesting trends in the elastic constants, both within
given material and among the two silicides and the pure
and pure Si phases.6 In the present work we analyze thes
trends in much greater detail and in a more quantitative fa
ion by constructing valence force field models for all fo
materials. The models are obtained by fitting the first pr
ciples elastic constants while also using insights gained fr
the charge density analysis to guide the particular choice
radial and angular interactions. In turn, the magnitudes
these various interactions, as obtained from the fits, provid
quantitative measure of the relative importance of differ
elements of the chemical bonding. In addition, the mod
can be inverted by expressing the various elastic constan
terms of the volume-, radial-, and angular-dependent inte
tions. We are thus able to identify the individual trends in t
elastic constants with particular elements of the chem
bonding.

In the present work we have two overall goals. The firs
to gain a quantitative understanding of the chemical bond
in tetragonala-Pt2Si and orthorhombic PtSi. The secon
goal is to demonstrate, through a case study of these
silicides as well as pure Pt and pure Si, that in general te
the variations of the elastic constants of a material con
useful information about the chemical bonding and that
lence force field models are a convenient means for extr
ing this information. Moreover, by inverting the models a
identifying the chemical interactions responsible for the o
served trends in the elastic constants we are thereby ab
obtain a more intuitive understanding of the connection
©2001 The American Physical Society10-1
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tween chemical bonding and the mechanical properties
material. Given this more general goal we have theref
described the construction of the models and the analys
various elastic constant trends in some detail. Section II p
vides the relevant details regarding the atomic structure
the two platinum silicides studied here. In Sec. III we su
marize the previous elastic constant calculations from Re
The valence electronic charge densities are analyzed in
IV and the valence force field models are presented in Se
Our results are summarized in Sec. VI.

II. ATOMIC STRUCTURE

The stable phase of pure Pt at ambient conditions is fa
centered cubic~fcc!,9 while for pure Si it is cubic diamond.10

The conventional unit cells of the two platinum silicide
a-Pt2Si and PtSi are shown in Fig. 1. The room-temperat
(T,968 K) a-phase of Pt2Si occurs in the body-centere
tetragonal~bct! structure.11,12 The Strukturbericht designa
tion is L82b and the space group isI4/mmm ~No. 139!.13

The two symmetry-equivalent Pt atoms in the primitive c
occupy Wyckoff 4(d) sites and the one Si atom occupies
2(a) site. The atom positions are completely determined
the space group symmetry but there are two indepen
lattice constantsa andc. PtSi has a primitive orthorhombi
structure with four symmetry-equivalent Pt atoms occupy
Wyckoff 4(c) sites and four symmetry-equivalent Si atom
also occupying 4~c! sites.14–16 The Strukturbericht designa
tion for this MnP-type lattice isB31 and the space group
Pnma ~No. 62!.13 The atom coordinates along thea and c
axes are not completely specified by the space group s
metry and thus there are four free internal structural par
etersuPt, vPt, uSi , and vSi . The structure also has thre
independent lattice constantsa, b, andc. All of the relevant
equilibrium structural parameters for each of these four m
terials are given in Table I, including both the experimen
values and the self-consistent theoretical values calcul
from first principles in Ref. 6.

III. ELASTIC CONSTANTS

Since we will rely heavily on the detailed results of th
first principles elastic constant calculations from Ref. 6,

FIG. 1. Conventional unit cells of~a! body-centered tetragona
a-Pt2Si and ~b! orthorhombic PtSi. The relevant lattice consta
distances are illustrated in both cases.
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briefly summarize them here. The change in the internal
ergy, DE, of the crystal is expanded to second order in t
elements of the strain tensorei , using Voigt notation,

DE~V,$ei%!5
V

2 (
i j

ci j eiej , ~1!

whereV is the volume of the unstrained crystal and theci j
are the second-order elastic constants.6 All of the elastic con-
stant calculations were carried out using the theoretical e
librium structural parameters listed in Table I.

Crystals with cubic space group symmetry have o
three distinct, nonvanishing elastic constants. The theore
values of these three elastic constants for both pure Pt
pure Si, as obtained in Ref. 6, are listed in Table II toget
with the corresponding experimental values. The theoret
bulk moduli were obtained from the theoretical elastic co
stants@B05 1

3 (c1112c12)#. We note that in the case of Si th
calculation ofc44 required a relaxation of the positions of th
Si atoms within the distorted unit cell.

Tetragonala-Pt2Si has six independent and nonzero ela
tic constants. Three of these elastic constants,c11, c12, and
c44, correspond to strain-induced symmetry reductions
which the positions of the Pt atoms are no longer comple
fixed by the symmetry. The strain-induced forces drive th
into energetically more favorable positions~the correspond-
ing forces on the Si atoms are identically zero by symmet!.
The first principles results for the six elastic constants
a-Pt2Si are given in Table III. The values labeled as ‘‘fro
zen’’ correspond to keeping all of the atoms held fixed at
positions determined solely from the strain tensor, while
elastic constants labeled ‘‘relaxed’’ were obtained by rela
ing the strain-induced forces on the Pt atoms. The b
modulus is calculated from the tetragonal elastic consta
B05 1

9 (2c111c3312c1214c13), and has the same value i
the frozen and relaxed calculations.

There are nine independent and nonzero elastic cons
for orthorhombic PtSi. Relaxation of the internal degrees
freedom was necessary in calculating all nine PtSi ela
constants because the atomic positions are not comple

TABLE I. Equilibrium theoretical~from Ref. 6! and experimen-
tal lattice constants~in a.u.! and internal structural parameters~for
PtSi!.

Material a0 b0 c0 Ref.

Pt theor. 7.403 6
expt. 7.415 30

a-Pt2Si theor. 7.407 11.241 6
expt. 7.461 11.268 12

PtSi theor. 10.583 6.774 11.195 6
expt. 10.539 6.778 11.180 15

Si theor. 10.22 6
expt. 10.26 31

PtSi uPt vPt uSi vSi Ref.

theor. 0.9977 0.1919 0.1782 0.5841 6
expt. 0.9956 0.1922 0.177 0.583 15
0-2
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TABLE II. Elastic constants of Pt and Si. The first principles calculations, described in Ref. 6,
carried out at the theoretical self-consistent lattice constants ofaPt57.403 a.u. andaSi510.22 a.u. The
theoretical value ofc44 in parentheses for Si is the ‘‘frozen’’ value obtained without allowing for inter
relaxation. The bulk modulus is calculated from the elastic constants asB05

1
3 (c1112c12). Experimental

values are extrapolated to 0 K. All values are in units of GPa.

Pt, theory~Ref. 6! Pt, expt.~Ref. 32! Si, theory~Ref. 6! Si, expt.~Ref. 31!

c11 346.860.5 358 163.4560.03 165
c12 262.760.3 254 62.1360.02 63
c44 87.560.3 77 79.8560.02 ~108.6! 79.1
B0 290.860.3 288.4 95.9060.02 97.0
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fixed by the space group symmetry, even for the unstrai
crystal. The results of the calculations are listed in Table
The labels ‘‘frozen’’ and ‘‘relaxed’’ have the same meanin
as in the case ofa-Pt2Si. The two values ofB0 are obtained
from the elastic constants,B05 1

9 (c111c221c3312c12
12c1312c23). As expected, the relaxed value ofB0 is
smaller than the frozen value.

Figure 2 summarizes the calculations for all four materi
in terms of the trends of the elastic constants as a functio
the atomic percent Pt. Each of the curves corresponds t
average of a different class of elastic constants, while
symbols show the values of the individual elastic consta
themselves. Mechanical stability requires that6 1

3 (c121c13
1c23),B0, 1

3 (c111c221c33) @note that in the case o
a-Pt2Si the appropriate averages are13 (c1212c13) and
1
3 (2c111c33) becausec135c23 and c115c22 for tetragonal
crystals#. This stability requirement is reflected in the to
three curves in Fig. 2. We also see that these three cu
each increase monotonically as a function of atomic perc
Pt from pure Si to pure Pt, and we note that all three clas
of elastic constants represented by these curves correspo
15511
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strains in which the volume is not fixed. Conversely, the t
lower curves labeled (c112c12)/2 andc44 correspond to the
two classes of elastic constants in which the strains
strictly volume-conserving@in the case of PtSi the lowes
solid-line curve and large open circles correspond to ela
constant combinations 1

4 (c111c2222c12),
1
4 (c111c33

22c13), and 1
4 (c221c3322c23)#. We see that in this case th

two sets of averages are approximately constant as a func
of atomic percent Pt. The significance of this difference
the trends of volume-conserving versus non-volum
conserving elastic constants is connected to the curve lab
C0 and is discussed in Sec. V along with a general discuss
of the relationship between the magnitudes of the vari
elastic constants and the chemical bonding.

IV. ELECTRONIC CHARGE DENSITY

In order to provide insight into the nature of the chemic
bonding ina-Pt2Si and PtSi we have analyzed the valen
electronic charge density in these materials. We have cho
to plot charge density differences, the superposition of f
r-
d
uctural

eters.
tion

g a
ic
TABLE III. First principles elastic constants ofa-Pt2Si and PtSi from Ref. 6. Calculations were pe
formed at the theoretical self-consistent lattice constants~Table I!. ‘‘Frozen’’ refers to keeping the atoms fixe
at the positions determined solely from the strain tensor and, in the case of PtSi, with the internal str
parameters held fixed at their theoretical self-consistent values~Table I!. ‘‘Relaxed’’ indicates that a relax-
ation of the atomic positions was carried out, including a relaxation of the PtSi internal structural param
Parentheses in the case of the relaxeda-Pt2Si elastic constants denote values where no internal relaxa
was necessary because of symmetry constraints~small differences with the frozen values come from usin
slightly more stringent convergence criterion on the energy!. The bulk modulus is calculated from the elast
constants asB05

1
9 (2c111c3312c1214c13) for a-Pt2Si andB05

1
9 (c111c221c3312c1212c1312c23) for

PtSi. No experimental data is available for either material. All values are in units of GPa.

a-Pt2Si, frozen~Ref. 6! a-Pt2Si, relaxed~Ref. 6! PtSi, frozen~Ref. 6! PtSi, relaxed~Ref. 6!

c11 347.261.2 332.460.9 327.561.2 298.261.2
c22 313.860.0 269.360.8
c33 297.560.5 (298.060.4) 345.960.1 308.060.6
c12 225.061.2 239.661.0 157.760.6 156.460.8
c13 169.360.9 (169.460.8) 162.960.6 132.260.7
c23 153.460.1 165.160.6
c44 75.460.3 62.760.5 141.360.3 100.160.4
c55 113.160.1 104.560.1
c66 169.565.2 (169.365.2) 74.260.2 66.360.4
B0 235.460.6 (235.560.5) 215.060.2 198.160.3
0-3
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atom densities subtracted from the fully self-consistent cr
tal density, thus emphasizing the formation of bonds. Si
we are using an all-electron method even the valence ch
density has a large amplitude close to each of the ato
positions. Subtracting two such large numbers can so
times produce unusual features in the plots described be
but these are of no consequence to our discussion. Rathe
focus on the smoothly varying density differences in betwe
the atomic positions. In all of the gray-scale plots presen
below the brighter spots represent an increase in the de
relative to superimposed free atoms while the darker sp
represent a decrease, with exactly the same scale being
in all of the plots.

A. FPLMTO method

The valence electronic charge densities were obtained
ing a full-potential linear muffin-tin orbital~FPLMTO!
method17,18 which makes no shape approximation for t
crystal potential. The crystal is divided up into regions ins
atomic spheres, where Schro¨dinger’s equation is solved nu
merically, and an interstitial region. The wave functions
the interstitial region are Hankel functions. An interpolati
procedure is used for evaluating interstitial integrals invo
ing products of Hankel functions. The triple-k basis is com-
posed of three sets ofs, p, d, and f LMTOs per atom with
Hankel function kinetic energies of2k2 520.01,21.0, and
22.3 Ry~48 orbitals per atom!. The Hankel functions deca
exponentially ase2kr . The angular momentum sums in
volved in the interpolation procedure are carried up to
maximum ofl 56. The calculations presented here are ba

FIG. 2. Trends in the elastic constants as a function of ato
percent Pt for pure cubic-diamond-phase Si, orthorhombic PtSi
tragonala-Pt2Si, and fcc Pt. The different curves correspond to
average values of different classes of the individual elastic c
stants, as specified in the legend. For example, in the case o
dotted-line curve labeled asc12, the line passes through13 (c12

1c131c23) in the case of PtSi and through13 (c1212c13) for
a-Pt2Si (c135c23 for tetragonal crystals!, while the open square
show the actual values ofc12, c13, andc23, as appropriate for each
material. TheC0 force constant curve is scaled by the inverse of
volume per atom in order to be able to plot it on the same scal
the elastic constants. The significance ofC0 in connection with the
elastic constants is discussed in Sec. V.
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on the local density approximation, using the exchan
correlation potential of Ceperley and Alder19 as parametrized
by Vosko, Wilk, and Nusair.20 The scalar-relativistic Schro¨-
dinger equation was solved self-consistently. We did not
clude spin-orbit interactions and we used atomic sphere r
equal to one-half the nearest-neighbor bond lengths. In
case ofa-Pt2Si we included an empty atomic sphere at t
octahedral interstitial site, as well as the usual empty sph
in the interstitial sites of pure cubic-diamond-phase Si. Ho
ever, these empty spheres do not contribute to the basis
merely improve the accuracy of the interstitial interpolati
procedure.

The Pt 6s, 6p, 5d, and 5f orbitals as well as the Si 3s,
3p, 3d, and 4f orbitals were all treated as valence stat
The semicore Pt 5s and 5p orbitals were treated as full ban
states by carrying out a ‘‘two-panel’’ calculation. The seco
panel band calculation for the semicore orbitals included
Pt 5s, 5p, 5d, and 5f orbitals as well as all of the Si valenc
orbitals. The Brillouin zone~BZ! sums were carried out us
ing the tetrahedron method.21 We used the same mesh ofk
points for both the self-consistent total energy and cha
density calculations. In the case ofa-Pt2Si we used a shifted
24324324 (12312312) mesh in the full BZ, resulting in
1056~159! irreduciblek points in the first~second! panel. In
the PtSi calculations we used a shifted 12316312 (638
36) mesh in the full BZ, resulting in 288~36! irreduciblek
points in the first~second! panel. A shifted 28328328 (16
316316) mesh in the full BZ was used for fcc Pt, resultin
in 2030~408! irreduciblek points in the first~second! panel.
Finally, a shifted 12312312 mesh in the full BZ was used
for cubic-diamond-phase Si, resulting in 182 irreduciblek
points.

B. Pt and Si

We start with the well-known cases of pure diamon
phase Si and fcc Pt in order to provide a baseline with wh
to compare the results we obtain for the silicides. In Fig. 3~a!
we see the localized piling up of additional charge betwe
each pair of Si atoms that corresponds to the covalent bo
in this material. Except for these bonds, the density is re
tively unchanged from the free-atom superposition in the
maining regions outside of the atomic cores, as can be s
by identifying the ‘‘0’’ level in the accompanying scale ba
This circumstance is in stark contrast to the case of fcc P
Fig. 3~b!. In Pt the increase in density is spread appro
mately uniformly throughout all of the regions outside t
atomic cores. In fact, from this perspective Pt appears alm
free-electron-like, despite the more localized nature of
states arising from the partially occupiedd band. Thus we
see that charge density difference plots such as those in
3 are clearly able to distinguish metallic bonding, as occ
in Pt, from covalent bonding, as occurs in Si. For later p
poses we note that the nearest-neighbor spacing is 2.35
Si and 2.77 Å in Pt.

C. a-Pt2Si

Each Si atom ina-Pt2Si has eight Pt nearest-neighbors
a distance of 2.47 Å@see Fig. 1~a!#. In addition to four Si
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nearest-neighbors, each Pt atom also has four Pt sec
nearest neighbors at a distance of 2.79 Å and two Pt th
nearest neighbors at 2.98 Å. The Pt second-nearest neigh
form two-dimensional~001! planes while the Pt third-neare
neighbors form linear@001# chains. The Pt second-neares
neighbor distance is very close to the nearest-neighbor
tance in pure fcc Pt and thus we might expect these t
dimensional planes to exhibit evidence of metallic bondi
This is in fact what we see, as shown in Fig. 4~a! which bears
a strong resemblance to the analogous plot in Fig. 3~b!.
However, this approximately uniform increase in the cha
density in the regions outside the atomic cores is confine
the two-dimensional second-nearest-neighbor Pt~001!
planes. In particular, there is little evidence of bonding~i.e.,
little or no increase in the charge density relative to fr
atoms! along the third-nearest-neighbor@001# Pt chains.

In addition to the two-dimensional ‘‘metallic’’ bonding
we find strong evidence of covalent bonding between the
and Si nearest neighbors, illustrated in Fig. 4~b!. Unlike the
case of pure Si where the increase in charge density occu
between pairs of atoms, here the density increase is loca
between three atoms, two Pt and a Si. For this reason
refer to these features as three-center covalent bonds
might even be tempted to call these four-center bonds
cause there is a smaller increase in the density, in betw
the two Pt atoms, which connects two of the three-cen
bonds. However, we note that thex axis in Fig. 4~b! is along
the @11̄0# direction and that each of the Pt-Pt pairs in b
tween two of the three-center bonds are also located in
of the ~001! planes that exhibit evidence of metallic bondin

FIG. 3. Superposition of free atom densities subtracted from
fully self-consistent crystal density for~a! cubic-diamond-phase S
and~b! fcc Pt. In both plots there are 51 contour levels plotted w
pure black corresponding to210 and pure white to110
millielectrons/bohr3, as indicated in the scale bar. In~a! thex axis is
along @110# and they axis along@001# while in ~b! the x axis is
@100# and they axis @010#. In both cases the calculations we
carried out at the experimental equilibrium volume and only
density from the valence states was considered, excluding the
sity arising from the core states. In the case of Si~a! the density was
calculated at 763101 grid points while for Pt~b! there were 101
3101 grid points.
15511
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@Fig. 4~a!#. It would thus appear that rather than four-cen
covalent bonds, a more appropriate description of the bo
ing in a-Pt2Si would be three-center bonds interconnec
by two-dimensional metallic sheets.

The y axis of Fig. 4~b! is along the@111# direction and
highlights two of the central Si atom’s three-center bon
However, from Fig. 1~a! we see that there are four of thes
crystallographic directions and therefore a total of eight
these three-center bonds for each Si atom. As noted ab
the pair of Pt atoms participating in a given three-cen
bond are second-nearest neighbors themselves. Figure~c!
shows that there is another set of three-center bonds inv
ing one Si atom and a pair of Pt atoms that are third-nea
neighbors oriented along the@001# chains. Thex axis in Fig.
4~c! is along @100# and they axis is along@001#. There is
little or no indication of an increase in charge density alo
the Pt-Pt@001# chains. In addition to the two three-cent
bonds in Fig. 4~c!, there are two more of these bonds locat
in the plane obtained by a 90° rotation about the@001# axis
@see Fig. 1~a!#, for a total of four of these three-center bon
for each Si atom.

e

e
n-

FIG. 4. Superposition of free atom densities subtracted from
fully self-consistent crystal density for tetragonala-Pt2Si. The same
51 contour levels and gray scale are used as in Fig. 3. The
dimensional Pt-Pt second-nearest-neighbor metallic sheets
shown in~a! with thex axis along@100# and they axis along@010#.
In ~b! we show the three-center Pt-Si-Pt covalent bonds involv

two second-neighbor Pt atoms, with thex axis along@11̄0# and the
y axis along@111#. The second set of three-center Pt-Si-Pt coval
bonds involving two third-neighbor Pt atoms is illustrated in~c!
with the x axis along@100# and they axis along@001#. All three
calculations were carried out for the experimental equilibrium str
ture and only the density from the valence states was conside
The density was calculated at 1013101 grid points in~a!, 151
3201 grid points in~b!, and 1013151 grid points in~c!.
0-5
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Thus we see that each Si atom ina-Pt2Si participates in
12 three-center bonds, eight with Pt-Pt second-near
neighbors and four with Pt-Pt third-nearest neighbors,
that these three-center covalent bonds are interconnecte
two-dimensional second-nearest-neighbor Pt-Pt meta
sheets. Given the large increase in the number of bond
a-Pt2Si relative to pure Si we expect that each individu
bond will be weaker than one of the covalent bonds in
However, taken as a whole and in terms of the mate
strength, the more distributed nature of the bonding
a-Pt2Si may indicate something closer in character to
pure metallic bonding in fcc Pt. This interpretation is su
ported by the calculated elastic constants in Fig. 2, where
non-volume-conserving elastic constants fora-Pt2Si are
much closer to those of fcc Pt as opposed to pure Si.
address this issue in more detail in Sec. V C.

D. PtSi

In the orthorhombic PtSi structure each Si atom has six
neighbors, with one Pt at 2.41 Å, two at 2.43 Å, one at 2
Å, and two at 2.64 Å. In view of the fact that the neare
neighbor Pt-Si distance is 2.47 Å ina-Pt2Si it is perhaps not
surprising that we find the two Pt neighbors at 2.64 Å app
to contribute little to the bonding in PtSi. Each Si also h
two Si fifth-nearest neighbors at 2.84 Å but again we fi
little evidence of bonding between these atoms, which
consistent with the fact that the nearest-neighbor distanc
pure Si is only 2.35 Å. In addition to six Si neighbors at t
same distances listed above, each Pt atom also has tw
neighbors at a sixth-nearest-neighbor distance of 2.87 Å
two more at a seventh-nearest-neighbor distance of 2.9
These distances are somewhat larger than the 2.77 Å nea
neighbor distance in pure fcc Pt.

The striking appearance of three-center bonds ina-Pt2Si
is repeated in orthorhombic PtSi, as shown in Fig. 5~a!. As
we see in Fig. 1~b!, a convenient way to think of the PtS
structure is as two alternating planes of atoms stacked a
theb axis. Figure 5~a! shows the charge density difference
one of these planes. As in the case ofa-Pt2Si @Figs. 4~b! and
4~c!# we see a pileup of charge relative to the free at
density that is not localized between a single pair of ato
but rather between one Si and two Pt atoms. These Pt ne
bors participating in the three-center bond are the first-
third-nearest neighbors of the Si atom and are at distance
2.41 Å and 2.52 Å. The two Pt atoms are themselves six
nearest neighbors, with a bond length of 2.87 Å. There
pears to be a small increase in the charge density betw
these two Pt atoms. We note that the two different thr
center bonds shown in Fig. 5~a! are equivalent by symmetry

The two second-neighbor Pt atoms of a given Si atom
located in adjacentb-axis planes from the Si. The charg
density difference for these bonds is shown in Fig. 5~b!,
which indicates that they are of the standard two-center
riety. In addition to these two-center bonds, the plot a
shows part of the bond with the first-neighbor Pt atom on
left side of the figure. In fact, the two second neighbors
well as the first and third neighbors form a very distort
tetrahedron around the central Si atom. The Pt-Si-Pt b
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angles involving one Pt second neighbor and one third ne
bor are very nearly equal to the perfect tetrahedral angle
109.47° in pure Si, but the remaining four bond angles v
considerably, ranging from 71° to 132°.

There is very little evidence of an appreciable increase
the charge density between the Pt and Si fourth-nea
neighbors and the Si-Si fifth neighbors, as we mention
above. The Pt-Pt sixth-nearest neighbors in Fig. 5~a! show
some evidence of charge accumulation but the Pt-Pt sev
neighbors do not. We thus see that there appears to be
two sets of strong covalent bonds in orthorhombic PtSi,
three-center Pt-Si-Pt bonds within a givenb-axis plane and
the two-center Pt-Si bonds between atoms in adjacentb-axis
planes, resulting in a total of only three bonds per Si atom
this sense the bonding in PtSi appears to be qualitativ
much more similar to that in pure Si as compared to pure
or evena-Pt2Si. In particular, we are unable to identify an
concrete evidence in PtSi of a uniform increase in intersti
charge density that might be associated with an elemen
metallic bonding. We revisit this subject in Sec. V D.

V. VALENCE FORCE FIELD MODELS

In order to provide a more quantitative analysis of t
trends in the elastic constants as well as the various elem
of the chemical bonding, we construct simple valence fo
field models22,23 to describe the interatomic interactions f
pure Pt, pure Si, and the two silicides. In these models
change in the internal energy upon distorting the crystal,DE,
is given as follows

FIG. 5. Superposition of free atom densities subtracted from
fully self-consistent crystal density for orthorhombic PtSi. The sa
51 contour levels and gray scale are used as in Fig. 3. In~a! we
show the three-center Pt-Si-Pt covalent bonds with thex axis along

@ 1̄00# and they axis along@001#. The covalent Pt-Si bonds tha
connect atoms in adjacentb axis planes are shown in~b! with thex
axis approximately along@304̄# and they axis along@010#. Both
calculations were carried out for the experimental equilibrium str
ture and only the density from the valence states was conside
The density was calculated at 1013101 grid points in~a! and 81
365 grid points in~b!. The leftmost Pt atom in~b! with the label
contained inside a dotted circle is not actually located in the pl
of the plot but is close enough that its influence can still be see
0-6
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DE5
N

2
nC0S DV

V D 2

1
N

2 (
i

Ci S Ddi

di
D 2

1
N

2 (
i j

Ki j ~Du i j !
2,

~2!

whereN is the number of primitive cells in the crystal,n is
the number of atoms in the primitive cell,V is the volume,
Ddi is the change in thei th bond length, andDu i j is the
change in the bond angle between thei th and j th bonds. We
determine theC and K force constants by equating this e
pression forDE to the corresponding elastic constant expr
sions derived from Eq.~1!, examples of which are given in
Ref. 6. These coefficients are referred to as force const
because Eq.~2! could also be used to analyze the phon
spectrum and in this case, within a constant factor, the c
ficients play the role of Hooke’s law force constants.

The factor ofn in the first term of Eq.~2! is explicitly
included so that the resulting force constantC0 represents
the volume contribution per atom, thus facilitating the co
parison between materials with different numbers of atom
the primitive cell. Similarly, the indicesi and j are summed
over all of the relevant bonds for each of the atoms in
primitive cell ~avoiding any double counting!, which results
in force constants that represent the interaction strength f
single bond (Ci) or bond angle (Ki j ). The volume term in
Eq. ~2! is needed for metals such as Pt and is reminiscen
the embedded-atom method24,25 that has been successful
treating fcc metals. Similarly, the angular terms are nee
for covalently bonded systems such as Si; such terms a
part of the Tersoff potential formulation26 that has been use
successfully in semiconductor systems. Both the volume
the angular terms lead to deviations from the Cauc
relations,27 which are strict equalities between various elas
constants that apply when the interatomic interactio
are purely pairwise@i.e., including only the second term
in Eq. ~2!#.

A. Pt

In the case of fcc Pt we construct a two-parameter mo
considering only the nearest-neighbor bond length and a
ume term, but no angular terms. The radial force constanC1
can be obtained from the volume-conserving strains co
sponding to either (c112c12) or c44,

1

2
~c112c12!5

1

v
1

4
C1 ~3!

and

c445
1

v
1

2
C1 , ~4!

wherev5 1
4 a3 is the volume per atom. Taken together, the

two equations provide an explanation for the fact that (c11
2c12) andc44 for pure Pt are similar in magnitude in Tab
II. They also satisfy the cubic mechanical stability requi
ments that (c112c12).0 andc44.0.28

In order to facilitate comparison with the silicides whe
there is no experimental data for the elastic constants,
also use the theoretically determined elastic constants fo
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Pt. For the purpose of internal consistency we use the th
retical equilibrium volume as well. The resulting two valu
of C1 obtained from Eqs.~3! and~4! are 15.78 eV and 16.42
eV, respectively. The fact that the two numbers differ is
indication of the incompleteness of the two-parame
model. Use of the experimental elastic constants yield
bigger difference but we, nonetheless, will use the averag
these two values for the purpose of comparing to the s
cides,

C̄15v@~c112c12!1c44#. ~5!

Evaluating Eq.~5! using the theoretical elastic constants w
obtain C̄1516.10 eV, while the experimental elastic co
stants correspond to a value of 16.95 eV. We note t
we could have eliminated the need to use the averaged
pression in Eq.~5! by including additional force constant
but we prefer to maintain the conceptual simplicity
the two-parameter model. For example, including an ang
interaction in Eqs.~3! and ~4! results in a small and slightly
negative angular force constantK, which is conceptually
unsatisfying.

The uniform expansion and compression represented
the bulk modulusB0 can be used to obtain the followin
expression involvingC0 andC1,

B05
1

3
~c1112c12!5

1

v S C01
2

3
C1D . ~6!

Equations ~5! and ~6! together yield a value ofC0
516.54 eV using the theoretical elastic constants, and 15
eV using the experimental values. The values ofC0 andC1
obtained from the theoretical elastic constants are listed
Table IV. We note that the volume force constant has
proximately the same magnitude as the radial force cons
and that both are important in contributing to the large b

TABLE IV. Force constants of valence force field models@Eq.
~2!# for fcc Pt, tetragonala-Pt2Si, orthorhombic PtSi, and cubic
diamond-phase Si. TheC0 force constant represents the volum
dependent interaction, each of the remainingCi is a radial force
constant for thei th nearest-neighbor bond, andKi j is an angular
force constant for the bond angle between thei th and j th nearest-
neighbor bonds. All of the force constants are in units of eV.

Pt a-Pt2Si PtSi Si

C0 16.54 13.88 10.38
C1 16.10 13.58 42.58 54.06
C2 26.03 48.26
C3 8.39 10.90
C6 18.32
C7 3.91
K11 5.06 3.13
K12 1.87
K13 1.29
K22 7.62
K23 15.01
0-7



s

y

n

th
tr
ri-

tic

d
g

co
ec
a
or
n

ul

tw

n

u
on
ta
an

.

ce

lus
sion
ns.
us

g

del
tical

eed
Si.
for

de-

stic
the
l

nts
e of

dial
,
The

of

i-

the
tion

J. E. KLEPEIS, O. BECKSTEIN, O. PANKRATOV, AND G. L. W. HART PHYSICAL REVIEW B64 155110
modulus. For completeness we also give the expression
c11 andc12 in terms ofC0 andC1,

c115
1

v
~C01C1!, ~7!

c125
1

v S C01
1

2
C1D . ~8!

Equations~6!–~8! explicitly satisfy the mechanical stabilit
requirement thatc12,B0,c11.6

The Cauchy relation for cubic crystals is thatc125c44.27

Using Eqs.~4! and ~8! we obtain the following expressio
for the deviation from the cubic Cauchy relation:

~c122c44!5
1

v
C0 . ~9!

Thus we see that the large and positive deviation from
Cauchy relation in pure Pt is due to a large volume con
bution toc12. Moreover, the presence of the volume cont
butionC0 is responsible for the fact thatc11, c12, andB0 are
all significantly larger than the volume-conserving elas
constants1

2 (c112c12) andc44 in Table II.

B. Si

In the case of Si we also construct a two-parameter mo
but instead consider only the nearest-neighbor bond len
and the tetrahedral bond angle and set all of the otherC and
K force constants to zero. Since there are three elastic
stants and we allow only two force constants, we can ch
the accuracy of the model. The volume-conserving str
corresponding to (c112c12) leaves the nearest-neighb
bond lengths unchanged to first order in the distortion a
thus only the angular force constant enters,

1

2
~c112c12!5

1

v
2K11, ~10!

wherev5 1
8 a3 is the volume per atom. Comparing this res

to Eq.~3! we see that12 (c112c12) has a very different origin
in Si as compared to fcc Pt, despite the fact that the
values are approximately the same in Table II.

The volume-conservingc44 strain in Si involves both ra-
dial and angular distortions and can thus be used in conju
tion with Eq. ~10! to determineC1,

c44
frozen5

1

v S 2

9
C11

4

9
K11D , ~11!

wherec44
frozen corresponds to a purec44 strain, without allow-

ing for any internal relaxation. This choice is convenient b
not essential and we can test how well the two force c
stants we obtain describe the final remaining elastic cons
Using the theoretically determined elastic constants
equilibrium volume, Eqs. ~10! and ~11! yield C1
554.06 eV andK1153.13 eV, which are listed in Table IV
Based on this analysis, the fact that (c112c12) andc44 for Si
15511
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are close in magnitude in Table II is merely a coinciden
having to do with the specific values of theC1 andK11 force
constants.

The final independent elastic constant is the bulk modu
B0 that corresponds to an isotropic expansion or compres
and therefore only involves radial but not angular distortio
In addition, this distortion is not volume-conserving and th
we could also have included theC0 volume term from Eq.
~2!, which would not affect either of the volume-conservin
strains corresponding to Eqs.~10! and ~11!, but would yield
the following equation for theB0 distortion,

B05
1

3
~c1112c12!5

1

v S C01
2

9
C1D . ~12!

Our two-parameter model hasC0[0 and thus the extent to
which C0 obtained from Eq.~12! deviates from zero pro-
vides a direct measure of how well the two-parameter mo
is able to describe the elastic constants. Using the theore
values determined here, Eq.~12! yields C0520.18 eV,
which demonstrates that the two-parameter model is ind
sufficiently accurate for describing the elastic constants in
For the sake of completeness we give the expressions
c11, c12 and the deviation from the Cauchy relation (c12
2c44), including a volume contribution,

c115
1

v S C01
2

9
C11

8

3
K11D , ~13!

c125
1

v S C01
2

9
C12

4

3
K11D , ~14!

~c122c44!
frozen5

1

v S C02
16

9
K11D . ~15!

We can compare our two-parameter model to the one
rived by Harrison.22 His angular term has the identical form
as ours and his value ofK1153.2 eV differs from ours of
3.13 eV only because we have used the theoretical ela
constants and equilibrium lattice constant while he uses
experimental values.29 We derived the value of the radia
force constantC1 using the frozenc44 elastic constant
whereas Harrison derives his radial force constant fromB0.
The two values would be identical if the value ofC0 derived
from Eq. ~12! were exactly zero. The small deviation from
zero, in addition to the difference in the lattice consta
used, leads to a small difference between Harrison’s valu
C1555.0 eV and our value of 54.06 eV.

We have found that for Si the angular force constantK11
is more than an order of magnitude smaller than the ra
force constantC1 ~Table IV!. The angular interaction is
nonetheless, of particular importance for two reasons.
first is that the crystal would be unstable in the absence
angular interactions since (c112c12)[0 @Eq. ~10!# and B0
5c115c12 @Eqs. ~12!–~14!# for purely radial interactions,
both of which violate the cubic mechanical stability cond
tions that (c112c12).0 and c12,B0,c11.6,28 The second
reason is that the angular interaction is responsible for
fact that the elastic constants do not obey the Cauchy rela
0-8
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for a cubic crystal,c125c44 @Eq. ~15!#. Including a volume
term but not an angular interaction would still result in
unstable crystal since the (c112c12) distortion is volume
conserving and the dependence onC0 is identical for B0 ,
c11, andc12. In addition, a positive volume contribution i
the absence of an angular interaction could not account
the fact that the deviation from the Cauchy relation is ne
tive (c12,c44). Thus we see that Eq.~15! and the fact that
K11 is small combine to provide an explanation for the fa
that c12 is smaller thanc44, but only by a relatively small
amount. This is in sharp contrast to pure Pt where the de
tion from the Cauchy relation@Eq. ~9!# arises fromC0 and is
large and positive, resulting in a value ofc12 that is more
than four times larger than in Si. More generally, the abse
of a volume contribution in Si is responsible for the fact th
c12 and B0 are similar in magnitude to the volume
conserving elastic constants1

2 (c112c12) andc44, in contrast
to the case of Pt~see Table II!.

From the force constants listed in Table IV we see thatC1

for Si is more than a factor of 3 times larger than for fcc
which is consistent with the presence of strong coval
bonds in Si and distributed metallic bonding in Pt. In ad
tion, the volume contributionC0 is equally important in
terms of the metallic bonding in Pt but plays no role in S
The influence on the elastic constants of these qualita
differences in the chemical bonding are clearly illustrated
comparing Eqs.~6! and~12! for the bulk moduli in Pt and Si,
respectively. We see that the geometry coefficient ofC1 is
three times larger for Pt than for Si, reflecting the differen
in the nearest-neighbor coordination and nearly compen
ing for the difference in the magnitudes of the two for
constants. Given thatC0 andC1 are approximately the sam
in Pt, we see from Eq.~6! that the volume contribution toB0
is approximately 50% larger than the contribution fromC1.
In the case of Si theC0 force constant is essentially zero an
this difference accounts for most of the difference in t
magnitudes ofB0 between Pt and Si. The prefactors of 1v
account for the remaining difference since the volume
atomv is 30% larger in Si.

We therefore see that the presence or absence of me
bonding, as reflected in theC0 and C1 force constants, is
intimately connected to the magnitudes ofB0. Similar analy-
ses can be used to explain the fact thatc11 andc12 are also
larger in Pt, the predominant reason being the presence
large volume contribution~or equivalently, metallic bonding!
in Pt but not Si. Conversely, the elastic constants correspo
ing to both of the volume-conserving distortions in P
1
2 (c112c12) and c44, are approximately the same as in S
indicating that they are less sensitive to the differences
chemical bonding for these two materials. These differ
trends in the volume-conserving versus non-volum
conserving elastic constants were already noted in Sec
and are illustrated in Fig. 2. The volume force constantC0 is
included in the figure on the same scale as the elastic
stants by dividing by the appropriate volume per atomv
~note thatC0/v is precisely the combination that enters
of the expressions for the non-volume-conserving ela
constants!.
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C. a-Pt2Si

In order to provide a more quantitative description of t
chemical bonding ina-Pt2Si we describe the interatomic in
teractions using a valence force field model, just as we
for pure fcc Pt and pure Si. In view of the analysis of t
valence charge density in Sec. IV C, we include firs
second-, and third-nearest-neighbor radial force constant
well as a volume term. We also consider some of the ang
interactions. In keeping with our neglect of angular intera
tions in pure Pt we also neglect the bond angles between
two Pt-Pt bonds, both in the two-dimensional~001! metallic
sheets and the@001# Pt chains. In consideration of the thre
center bonds discussed earlier, we include both the Pt-S
and the Si-Pt-Pt bond angles relevant to the three-ce
bonds involving one Si atom and two second-neighbor
atoms. However, we neglect the bond angles relevant to
three-center bonds involving one Si and two third-neighb
Pt atoms. This choice is based on the expectation that
strength of the angular interactions will generally be sma
than that of the radial interactions and that the three-ce
bond involving two Pt second-neighbors is stronger than
one involving two third neighbors. We thus have six for
constants that can be fit to the six elastic constants. For
sake of convenience we fit the force constant expression
the ‘‘frozen’’ elastic constants, where no internal relaxatio
were carried out. This choice is not essential and need no
considered an additional approximation because the resu
force constants could be used to directly calculate the in
nal relaxations.

The volume-conserving strains corresponding to (c11
2c12) andc44 both depend only on the first-nearest-neighb
Pt-Si radial force constantC1 since the second- and third
nearest-neighbor Pt-Pt bond lengths are left unchange
first order. In addition, (c112c12) depends on the Si-Pt-P
bond angle but not the Pt-Si-Pt bond angle, whilec44 de-
pends on both. We label the force constant for the Pt-S
bond angle asK11 because it is the angle between two firs
neighbor bonds. Similarly we label the Si-Pt-Pt force co
stant asK12. Equating the elastic constant@Eq. ~1!# and force
constant@Eq. ~2!# expressions for the change in the ener
and using the theoretical lattice constants from Table I,
obtain the following two equations,

1

2
~c112c12!

frozen5
1

v
~0.2685C111.1553K12! ~16!

and

c44
frozen5

1

v
~0.3092C110.2874K1110.8089K12!, ~17!

wherev50.2529a3 is the volume per atom. We note that
these equations and all of those that follow, the numer
coefficients are simply geometrical factors containing va
ous combinations of thea andc lattice constants. Examining
the geometry coefficients ofC1 in Eqs. ~16! and ~17!, to-
gether with the expectation that the angular force consta
will be significantly smaller in magnitude thanC1, we see
that these two equations provide a natural explanation
0-9
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the fact that12 (c112c12) is similar in magnitude but slightly
smaller thanc44 in Table III. We also see that two of th
mechanical stability requirements for tetragonal crysta
(c112c12).0 andc44.0,28 are explicitly satisfied.

The volume-conserving strain corresponding toc66
changes the second-neighbor Pt-Pt bond length, leaving
other two bond lengths unchanged to first order. This str
also modifies the two bond angles, yielding

c665
1

v S 1

3
C211.2394K1110.6197K12D . ~18!

Thus we can see from Eqs.~17! and ~18! that sincec66 in
Table III is somewhat more than two times larger thanc44,
we expect that the second-neighbor Pt-Pt force constanC2
must be approximately two times larger than the fir
neighbor Pt-Si force constantC1. We will in fact find this to
be the case. Equation~18! also satisfies the mechanical st
bility requirement thatc66.0.28

The final remaining volume-conserving strain correspo
ing to (c111c3322c13) changes all of the first-, second-, an
third-neighbor bond lengths, as well as the two bond ang

1

4
~c111c3322c13!

frozen

5
1

v S 0.0687C11
1

12
C21

1

6
C310.3723K1110.4750K12D .

~19!

We note that14 (c111c3322c13).0 as required for mechani
cal stability,28 and that it is similar in magnitude to12 (c11
2c12) andc44 in Table III.

The uniform expansion and compression correspondin
the bulk modulusB0 changes the volume and all of the bon
lengths but leaves the bond angles fixed,

B05
1

9
~2c111c3312c1214c13!

5
1

v S C01
8

27
C11

4

27
C21

2

27
C3D . ~20!

The final two equations resulting from thec11 andc33 strains
both include a contribution from a change in the volume,

c11
frozen5

1

v S C010.5370C11
1

3
C210.1655K1111.2381K12D

~21!

and

c335
1

v S C010.3560C11
2

3
C310.6619K1110.3310K12D .

~22!

Similarly, the equations forc12 andc13 are

c12
frozen5

1

v S C01
1

3
C210.1655K1121.0726K12D ~23!

and
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c135
1

v
~C010.3092C120.3310K1120.1655K12!. ~24!

Equations~20!–~24! explicitly satisfy the mechanical stabil
ity requirements thatB0, 1

3 (2c111c33) and B0. 1
3 (c12

12c13).
6 We note that in contrast to the case of Si, all of t

mechanical stability requirements would be satisfied even
purely radial interactions~i.e., no angular interactions!.

Equations~16!–~19!, ~21!, and~22! represent six linearly
independent equations in the six unknown force consta
Solving this linear system of equations yields the force c
stants listed in Table IV fora-Pt2Si. The volume force con-
stantC0 is only 16% smaller than in pure Pt. This finding
consistent with the presence of two-dimensional meta
sheets ina-Pt2Si and the fact that there are a large number
distributed three-center bonds all interconnected by th
sheets. The first neighbor Pt-Si force constantC1 is nearly
four times smaller thanC1 in pure Si. This large reduction
results from the fact that each Si atom ina-Pt2Si has eight Pt
nearest neighbors and participates in 12 different three-ce
bonds. Conversely, the second-neighbor Pt-Pt force cons
C2 is 60% larger than the correspondingC1 force constant in
pure fcc Pt, despite the fact that the two Pt-Pt bond leng
are very nearly the same. We can understand this result
cause each Pt atom in pure Pt has 12 nearest neighbors
each Pt ina-Pt2Si has only four Pt second neighbors and tw
Pt third neighbors. Moreover, the Pt atoms in the silici
participate in covalent three-center bonds in addition to
metallic bonding within the two-dimensional sheets. The d
tributed nature of these bonds and the large number of th
in the primitive cell are both consistent with the fact thatC2
is still a factor of 2 smaller thanC1 in pure Si. We found
little evidence of an increase in the electronic charge den
between the Pt-Pt third neighbors and this is reflected in
fact thatC3 is more than three times smaller thanC2. We
also find that the angular force constantsK11 and K12 are
similar in magnitude to theK11 force constant in pure Si
These angular terms play an important but less crucial rol
the silicide as compared to pure Si.

Having determined the values of the individual force co
stants we can now use them to understand the trends in
elastic constants. For example, the two Cauchy relations
tetragonal crystals are thatc125c66 and c135c44.27 Using
Eqs. ~18! and ~23! the deviation from the first Cauchy rela
tion is given by

~c122c66!
frozen5

1

v
~C021.0739K1121.6923K12!. ~25!

Similarly, the deviation from the second Cauchy relation

~c132c44!
frozen5

1

v
~C020.6184K1120.9744K12!. ~26!

As in the case of pure Pt@Eq. ~9!#, it is the presence of the
volume interaction that produces a positive deviation fro
the Cauchy relations. The angular interactions provide
negative contribution to Eqs.~25! and ~26!, just as they did
for pure Si@Eq. ~15!#. From the geometry coefficients of th
angular terms we see that (c132c44) must be larger in mag-
0-10
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nitude than (c122c66). The net result is that the deviation
from the Cauchy relations fora-Pt2Si are still positive but
are factors of 2–3 smaller than the deviation in pure Pt.

In pure Pt we found that the volume-conserving elas
constants were all significantly smaller than the others
that this was due predominantly to the presence of a la
volume contributionC0. We find the same trend ina-Pt2Si
with 1

2 (c112c12), c44, and1
4 (c111c3322c13) all being simi-

lar in magnitude and smaller than all of the remaining ela
constants~see Table III!. The notable exception to this tren
is c66. In conjunction with Eq.~18! we already noted that th
large value ofc66 in relation to the other volume-conservin
elastic constants is due primarily to the fact that the seco
neighbor Pt-Pt force constantC2 is a factor of 2 larger than
the first neighbor Pt-Si force constantC1. This result is in
turn directly related to the presence of the network of thr
center bonds interconnected by two-dimensional meta
sheets. We also saw that mechanical stability for tetrago
crystals requires thatc12,c11, c13,

1
2 (c111c33), B0

, 1
3 (2c111c33), and B0. 1

3 (c1212c13).
6,28 In addition, the

deviations from the Cauchy relations are positive. The
maining variations among the six elastic constants in Ta
III are determined by the detailed dependence on the var
force constants as described above.

One interesting example is thatc13 is found to be essen
tially identical toc66. Comparing Eqs.~18! and~24! we see
that in the case ofc13, positive volume and first-neighbo
radial terms are partially counterbalanced by negative an
lar contributions, whereasc66 corresponds to a volume
conserving distortion and has positive angular contributio
In addition, thec13 distortion changes the first-neighbor bon
lengths, leaving the others fixed, while thec66 distortion
changes the second-neighbor bond lengths, leaving the
ers fixed. We have already noted thatc66 is anomalously
large in comparison toc44 predominantly becauseC2 is
twice as large asC1. The elastic constantc12 is larger than
c13 for the same reason, thus explaining how it is at le
possible for the volume-conserving elastic constantc66 to be
similar in magnitude to the non-volume-conserving elas
constantc13, despite the presence of a large volume fo
constantC0. In summary, while we are able to explain th
overall magnitudes of the individual elastic constants, we
forced to conclude that the specific equality ofc13 andc66 in
Table III depends on the precise values of the individ
force constants and is therefore simply accidental.

We saw in Eq.~6! for the bulk modulus of Pt that the
volume contribution represented 60% of the total, with t
contribution from the radial interaction making up the re
The same approximate 60:40 split between the volume
radial contributions applies to the expression for the b
modulus ofa-Pt2Si in Eq. ~20!. In addition, the volume pe
atomv is nearly the same in the two materials. Thus we
that the 16% reduction inC0 for a-Pt2Si relative to Pt, com-
bined with a similar reduction in the overall radial contrib
tion, leads to a bulk modulus that is approximately 20
smaller ina-Pt2Si. As we noted previously, there is no vo
ume contribution in Si where the bulk modulus is a factor
2–3 smaller. Conversely, the volume-conserving elastic c
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stantc44 is similar in magnitude for all three materials. Com
paring Eqs.~4!, ~11!, and ~17! we see that in pure Ptc44
arises solely fromC1 whereas in pure Si anda-Pt2Si it arises
from a combination ofC1 and angular contributions. In S
the split is 90:10, radial to angular, while in the silicide th
split is only 60:40 sinceC1 is a factor of 4 smaller. In addi-
tion, the volume per atom is 30% larger in Si than in t
other two materials. The remaining elastic constants
a-Pt2Si can be similarly analyzed in relation to those of pu
Pt and pure Si.

D. PtSi

Once again we construct a valence force field mode
describe the chemical bonding and elastic constant trend
PtSi. In keeping with the discussion of the valence cha
density in Sec. IV D, we include first-, second-, and thir
neighbor Pt-Si radial force constants~labeledC1 , C2, and
C3) as well as sixth- and seventh-neighbor Pt-Pt radial fo
constants~labeledC6 and C7). We also include a volume
term (C0) and three Pt-Si-Pt angular force constants. T
angular force constants are labeledK13, corresponding to the
bond angle between first- and third-neighbor Pt-Si bon
K22, corresponding to the bond angle between two seco
neighbor Pt-Si bonds, andK23, corresponding to the bond
angle between second- and third-neighbor Pt-Si bonds. Th
three bond angles are the ones we have found to be m
important and are the ones that correspond to the disto
tetrahedral Pt-Si-Pt angles described in Sec. IV D. The fou
and last of these angles is represented by the force con
K12 but we found it to be unimportant and have not includ
it in the analysis presented here. Part of the reason for
finding may be that this bond angle is 131.72°, which
quite different from the perfect tetrahedral angle of 109.4
We thus have nine force constants that can be fit to the n
elastic constants. As in the case ofa-Pt2Si we fit the force
constant expressions to the ‘‘frozen’’ elastic constants ou
convenience, but this choice is not essential because th
laxations could be calculated from the resulting model.

Most of the expressions for the elastic constants in te
of the force constants involve all of the radial and angu
terms and thus there is not much to be learned by writ
them down. Two exceptions are the volume-conserv
strains corresponding toc44 andc66, which depend only on
the second-neighbor Pt-Si and seventh-neighbor Pt-Pt ra
force constants, as well as the angular force constantK23.
Using the theoretically determined structural paramet
from Table I we obtain the following two expressions:

c44
frozen5

1

v
~0.1601C210.1182C710.3279K23! ~27!

and

c66
frozen5

1

v
~0.0882C210.000 02C710.1750K23!, ~28!

wherev50.084 64a3 is the volume per atom. The force con
stantC7 will turn out to be small and thus we can see fro
Eqs.~27! and ~28! that c44

frozen is approximately a factor of 2
0-11
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larger thanc66
frozen purely because of geometrical factors.

addition, the orthorhombic mechanical stability requireme
that28 c44.0 andc66.0 are satisfied by a combination o
radial and angular terms. However, as in the case ofa-Pt2Si,
the angular terms are not essential with regard to stab
since the crystal would still be stable under purely rad
interactions. It turns out that this circumstance is true for
of the orthorhombic mechanical stability requirements.
also note that all of the volume-conserving elastic consta
1
4 (c111c2222c12),

1
4 (c111c3322c13),

1
4 (c221c3322c23),

c44, c55, andc66 are similar in magnitude and smaller tha
the other non-volume-conserving elastic constants~see Table
III !. The primary exception isc44

frozen, although including the
effects of internal relaxation brings it in line with the oth
volume-conserving constants.

Solving the linear system of nine equations in the n
unknown force constants, we obtain the values listed in Ta
IV. The volume force constantC0 is nearly 40% smaller than
in pure Pt and 25% smaller than ina-Pt2Si. Nonetheless, the
value is still sizeable and perhaps somewhat surprising g
that we found no evidence of metallic-type bonding in o
analysis of the charge density in Sec. IV D. The first- a
second-neighbor Pt-Si radial force constants are quite la
and nearly as large as the first-neighbor Si-Si force cons
in pure Si. This result is consistent with the fact that w
found only a small number of two- and three-center bon
for each Si atom in PtSi. This small number of bonds me
that each bond is relatively strong, as is the case in pure
but in contrast to the situation ina-Pt2Si where the Pt-SiC1
force constant is more than a factor of 3 smaller. The f
thatC1 andC2 in PtSi are still smaller thanC1 in Si may be
due to the fact that the bond angles in PtSi are consider
distorted away from the perfect tetrahedral angle. The P
C3 force constant in PtSi is approximately a factor of
smaller thanC1 and C2, which may be due in part to th
correspondingly longer bond length.

The Pt-Pt sixth-neighbor force constantC6 is larger than
C1 in pure Pt which is likely due to the fact that this inte
action contributes to the three-center bonds in PtSi. Ho
ever, C6 is 30% smaller than the corresponding Pt-PtC2
force constant ina-Pt2Si, reflecting the longer bond length i
PtSi and the presence of two-dimensional metallic sheet
a-Pt2Si. Although the seventh-neighbor Pt-Pt bond length
PtSi is only 0.03 Å larger than the sixth-neighbor bo
length, the seventh-neighbor bond does not participate in
three-center bonds and we found little evidence of any
crease in the charge density. It is thus not surprising thatC7
is more than a factor of 4 smaller thanC6.

We find that the angular interactions are sizeable in P
as they were ina-Pt2Si. However, in PtSi these interaction
show a wider variation in magnitude, withK23 being more
than an order of magnitude larger thanK13. We can under-
stand the variation in these Pt-Si-Pt force constants by lo
ing at the sizes of the bond angles themselves.K13 corre-
sponds to a bond angle of 71.09°, which is very far from
perfect tetrahedral angle of 109.47°. The bond angle ass
ated withK22 is a lot closer, having a value of 94.64°, r
sulting in a larger force constant. The largest angular fo
15511
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constant is K23 with the corresponding bond angle o
109.75° being nearly identical to the perfect tetrahed
angle. While the trend in the angular force constants in P
is understandable in terms of the deviation relative to
pure tetrahedral angle, the large magnitude ofK23 in com-
parison to the angular force constants in pure Si anda-Pt2Si
is unexpected. The angular interactions appear to be
greater importance in PtSi than they were ina-Pt2Si. An
attempt to fit the elastic constants of PtSi using a vale
force field model including only radial interactions plus
volume term resulted in nonsensical values for these fo
constants. A sensible fit was only achieved after includ
angular terms.

We can now examine some of the trends in the ela
constants of PtSi using the calculated force constants. In
ticular, the Cauchy relations for an orthorhombic crystal a
thatc125c66, c135c55, andc235c44.27 The expressions for
the deviations from these Cauchy relations are as follow

~c122c66!
frozen5

1

v
~C020.1765K2220.0860K23!, ~29!

~c132c55!
frozen5

1

v
~C020.4475K1320.3453K23!, ~30!

~c232c44!
frozen5

1

v
~C020.3202K2220.4544K23!. ~31!

As in the case ofa-Pt2Si the volume interaction makes
positive contribution to the deviations from the Cauchy re
tions while the angular interactions make a negative con
bution. The geometry coefficients for the angular terms
Eqs.~29!–~31! are smaller than fora-Pt2Si in Eqs.~25! and
~26!, reflecting the smaller multiplicity of the bond angles
PtSi. This reduction is more than compensated by the la
magnitude of the force constants in PtSi, particularlyK23.
The volume per atomv is similar in the two silicides but the
magnitude ofC0 is smaller in PtSi. The combined effect o
the smallerC0 and the largerK23 is that the deviations from
the Cauchy relations in Eqs.~29!–~31! are still positive but
approximately 30% smaller on average than ina-Pt2Si. This
conclusion remains true for the relaxed elastic constants
though the specific numerical details are changed. For
ample, the larger geometry coefficients ofK22, and espe-
cially K23, in Eq. ~31! result in a very small deviation from
the third Cauchy relation (c232c44)

frozen for the frozen elas-
tic constants. When relaxation is includedc44 drops by 29%
while c23 increases by 8%, resulting in a significantly larg
deviation. However, (c132c55) becomes much smaller s
that on average the deviations are still approximately 3
smaller in PtSi.

The requirements of mechanical stability in orthorhomb
crystals constrain the elastic constants by requiring thatc12
, 1

2 (c111c22), c13,
1
2 (c111c33), c23,

1
2 (c221c33), B0

, 1
3 (c111c221c33), andB0. 1

3 (c121c131c23).
6,28 However,

there are additional trends among the elastic constants.
have already noted that the volume-conserving elastic c
stants in PtSi are all smaller than those where the co
sponding distortion does not conserve volume. The predo
0-12
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nant reason for this occurrence is the presence of the pos
volume contributionC0, just as it was in the case of pure P
and ina-Pt2Si ~see Fig. 2!. The positive deviations from the
Cauchy relations in Eqs.~29!–~31! provide specific ex-
amples of this trend. We noted above that the relatively la
value ofC0 in PtSi seemed surprising given the lack of e
dence for metallic bonding in the charge density. In fact
appeared that the chemical bonding in PtSi was much m
similar to that in pure Si than in eithera-Pt2Si or pure Pt.
However, the trends in the elastic constants of PtSi, the p
tive deviations from the Cauchy relations, and the sma
values of the volume-conserving elastic constants are m
more similar to those in the materials that do exhibit dir
evidence of metallic bonding, thus requiring a sizeableC0
volume contribution in PtSi as well. This conclusion is n
one that we would have reached based on the charge de
alone, thus demonstrating the need for care when exami
such qualitative characteristics. By contrast, the analysi
the elastic constants using a valence force field model
allowed a more quantitative description of the chemi
bonding. We note that the finding of both metallic and cov
lent components to the bonding in PtSi as well asa-Pt2Si
indicates a strong similarity between these two materials
may also be connected with the fact that the heats of for
tion for the two are very nearly the same.6

Finally, we examine how the elastic constants of PtSi
into the trends among the different materials studied h
The expression for the bulk modulus in PtSi is

B0
frozen5

1

9
~c111c221c3312c1212c1312c23!

frozen

5
1

v S C01
1

18
C11

1

9
C21

1

18
C31

1

18
C61

1

18
C7D .

~32!

Using the force constants listed in Table IV we find that th
is a roughly 50:50 split between the volume and radial c
tributions to B0 in Eq. ~32! compared to an approximat
60:40 split in pure Pt@Eq. ~6!# and a-Pt2Si @Eq. ~20!#. We
already noted that the volume per atomv is similar in all
three materials. Thus we see that the smaller value ofC0 is
partially compensated by an increase in the radial contr
tion, yielding a value ofB0 that is only slightly smaller in
PtSi than ina-Pt2Si, but still approximately a factor of 2
larger than in pure Si. We can now see that the nearly lin
relationship between the bulk modulus and the atomic p
cent Pt, evident in Fig. 2, has a direct connection with
nature of the chemical bonding in these materials. C
versely, the fact that the volume-conserving elastic const
are similar in magnitude in all four materials demonstra
that they are less sensitive to the nature of the bonding.
example,c44 in Pt @Eq. ~4!# arises purely from radial inter
actions while the split is 90:10, radial to angular, in Si@Eq.
~11!#. In the two silicides@Eqs. ~17! and ~27!# the split is
approximately 60:40. Despite these variations in the split
tween radial and angular contributions and variations in
individual force constants themselves, the volum
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conserving elastic constants are all relatively small and si
lar in magnitude in all four materials.

VI. SUMMARY

We have carried out an extensive study of the chem
bonding and elasticity of two room-temperature stable pl
num silicides, tetragonala-Pt2Si and orthorhombic PtSi, a
well as pure Pt and pure Si. We have investigated the tre
in the calculated elastic constants, both the trends withi
given material as well as between materials. The Cau
relations, thatc125c66, c135c55, andc235c44, apply to a
crystal in which the interatomic interactions are purely
dial. Real materials deviate from these relations and we
that in pure Pt as well as the two silicides the deviations
always positive~left-hand side greater than right-hand side!,
but in Si the deviation is negative. More generally, we fi
that in the metals the elastic constant expressions that co
spond to volume-conserving strains are always smaller t
those that correspond to strains that do not conserve volu
This also turns out to be true in Si with the exception thatc12
is less thanc44 ~negative deviation from the Cauchy rela
tion!. However, the difference in magnitudes betwe
volume-conserving and non-volume-conserving elastic c
stants is largest on average in Pt and gets smaller in
progression Pt→a-Pt2Si→ PtSi→Si. In general, the
volume-conserving elastic constants have similar magnitu
in all four materials while the non-volume-conserving elas
constants follow this same progression. In particular,
bulk modulus is found to be a very nearly linear function
the atomic percentage of Pt.

We have analyzed the valence electronic charge densi
order to gain insight into the nature of the chemical bond
in the silicides. In the case ofa-Pt2Si we find striking evi-
dence of a wide network of covalent three-center bonds, e
involving a single Si atom and two Pt atoms. Each Si at
participates in 12 different three-center bonds. We also fi
evidence of two-dimensional metallic Pt~001! sheets that ac
to interconnect the network of three-center bonds. The P
bond length in these two-dimensional sheets is very ne
the same as in pure fcc Pt. The widely distributed nature
the bonding ina-Pt2Si appears to be closer in character
the pure metallic bonding in fcc Pt than the covalent tw
center bonds in Si. The trends in the elastic constants sup
this interpretation. PtSi also exhibits evidence of coval
Pt-Si-Pt three-center bonds in addition to more stand
Pt-Si two-center bonds. Each Si atom participates in o
three-center bond and two two-center bonds with the fou
neighbors forming a very distorted tetrahedron. Two of t
six corresponding bond angles are very nearly equal to
perfect tetrahedral angle but the other four angles vary fr
71° to 132°. Qualitatively the bonding in PtSi appears mu
more similar to the covalent bonding in pure Si than t
metallic bonding in pure Pt, but the trends in the elas
constants indicate that there are actually elements of b
The finding of strong Pt-Si covalent bonding in PtSi is co
sistent with the experimental study of Francoet al.7,8 in
which they found spectroscopic evidence that the influe
of the Pt 6d orbitals extends throughout the entire valen
band.

We have constructed valence force field models for
two silicides as well as pure Pt and pure Si. These mod
provide a quantitative basis for understanding both the tre
0-13
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in the elastic constants and the various elements of
chemical bonding. We have included volume-, radial-, a
angular-dependent contributions in the models. The volu
dependent contribution, which reflects the presence of me
lic bonding, turned out to be a crucial element of the mod
The presence or absence of this term and the magnitud
the volume force constantC0 are predominantly responsibl
for the observed trend in the non-volume-conserving ela
constants as a function of Pt concentration. In addition,
absence of this contribution in the volume-conserving ela
constants is largely responsible for the fact that these c
stants have similar magnitudes in all four materials. T
variation in the sign and magnitude of the deviations fro
the Cauchy relations is a specific example of these m
general trends and is once again due primarily to the va
tion in the magnitude ofC0. The models also provide expla
nations for differences in magnitude between specific ela
constants for a given material, such as the anomalously l
value of c66 in a-Pt2Si, which we find to be closely con
nected to the three-center bonds in this material.

In addition to providing explanations for the trends in t
elastic constants, the magnitudes of the various force c
stants themselves provide a direct indication of the natur
the chemical bonding. The magnitude of the volume te
provides an indication of the relative importance of meta
bonding. This analysis demonstrated that there is an im
tant element of metallic bonding in PtSi, despite the lack
direct evidence in the analysis of the charge density. T
conclusion is required as a result of the specific values of
elastic constants in this material and would not have b
possible based solely on the qualitative features of the ch
density. Similarly, the magnitudes of the radial and angu
force constants are directly connected to the importanc
covalent bonds in the material. The trends in these const
confirm the general conclusions made on the basis of
charge density analysis. In addition, the conclusion that th
are elements of both metallic and covalent bonding
a-Pt2Si as well as PtSi may be connected to the fact that
heats of formation for the two silicides are nearly the sam
One general conclusion of this study is that the elastic c
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stants contain a great deal of information about the natur
the chemical bonding in a material but since this informat
is not readily apparent, an analysis such as the one prese
here is necessary in order to extract the information. We h
attempted to make the case here that an analysis in term
valence force field models provides a convenient and frui
way to analyze the elastic constants and their connectio
the chemical bonding in a material.

Our purpose in developing the valence force field mod
described in this work was to provide a quantitative mea
for investigating the nature of the chemical bonding in t
platinum silicides in comparison to pure Pt and pure Si a
also to provide a more intuitive understanding of the conn
tion between the chemical bonding and mechanical prop
ties of these materials. Nonetheless, we can briefly cons
the possibility that these models may be useful in carry
out future studies of silicide-silicon interfaces where fi
principles methods would be vastly more CPU intensive. F
example, depending on the growth conditions, the silic
thin film grown on a silicon substrate can be stabilized in
amorphous phase. The only hope of treating such a struc
would be to use a more efficient semiempirical method s
as a valence force field model. We believe that in genera
should be possible to develop such a model given that
basic formulation includes the same fundamental element
in other successful models, such as the embedded-a
method and Tersoff potentials. One possible point of conc
is the well-known fact that valence force field models
general tend to converge very slowly with respect to
number of interaction parameters in the model. This is
would certainly need to be explored before any attempt w
made to develop models that could be used in large-s
simulations.
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U.S. Department of Energy, Office of Basic Energy Scienc
Division of Materials Science by the University of Californ
Lawrence Livermore National Laboratory under Contra
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