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The atomic structure of grain boundaries plays a defining but poorly understood role in the

properties they exhibit. Due to the complex nature of these structures, machine learning is

a natural tool for extracting meaningful relationships and new physical insight. We apply a

new structural representation, called the scattering transform, that uses wavelet-based

convolutional neural networks to characterize the complete three-dimensional atomic

structure of a grain boundary. The machine learning to predict GB energy, mobility, and

shear coupling using the scattering transform representation is compared and contrasted

with learning using a smooth overlap of atomic positions (SOAP) based representation.

While predictions using the scattering transform are not as good as those of SOAP,

other factors suggest that the scattering transform may yet play an important role in

GB structure learning. These factors include the ability of the scattering transform to

learn well on larger datasets, in a process similar to deep learning, as well as their ability

to provide physically interpretable information about what aspects of the GB structure

contribute to the learning through an inverse scattering transform.

Keywords: machine learning, grain boundaries, atomic structure, characterization, SOAP, scattering transform

1. INTRODUCTION

Grain boundaries (GBs) in crystalline materials are complex structures that can have a significant
influence on material properties. The structural complexity derives from the fact that when any
two crystals are joined, there are macroscopic and microscopic degrees of freedom that influence
their behavior. With a proper understanding of how material properties are influenced by these
degrees of freedom, materials engineers could develop materials with enhanced properties. This
has been accomplished in a handful of cases using GB engineering (Watanabe et al., 2009; Randle,
2010). Unfortunately, the majority of materials used in society have not benefited from these efforts
as GB engineering primarily focuses on one special type of GB, the twin boundary. Continued
efforts in tailoring material properties as a result of GB engineering will require a more complete
understanding of GB structure-property relationships.

At the macroscopic level, the structural degrees of freedom are well known and defined by the
crystallography of the joined crystals (Frank, 1988; Patala et al., 2012; Patala and Schuh, 2013). At
the microscopic level, the structural degrees of freedom are defined by the configuration of the
atoms and the macroscopic degrees of freedom can be viewed as constraints (Tadmor and Miller,
2011; Han et al., 2016).
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Since material properties are derived from the atom
configurations, or microscopic degrees of freedom, more
attention must be given to characterization of atom
configurations at GBs. A full description of the microscopic
structure is given by the position of all the atoms, leading to 3N
positional degrees of freedom for N atoms. Due to the challenge
of fully defining GB structures through their 3N degrees of
freedom a variety of other structural metrics have been defined.

Among the commonly used structural descriptors of GBs
are the structural unit model (Frost et al., 1982; Sutton and
Vitek, 1983; Balluffi and Bristowe, 1984; Rittner and Seidman,
1996; Tschopp and McDowell, 2007; Spearot, 2008; Han et al.,
2017), dislocation arrays (Read and Shockley, 1950; Bishop
and Chalmers, 1968; Wolf, 1989; Medlin et al., 2001), and
common neighbor analysis (Honeycutt and Andersen, 1987).
These have unique capabilities and provide intuition primarily
in characterizing quasi-2-dimensional GB structures but have
limitations in characterizing fully 3-dimensional GB structures.
More recently a number of other models have emerged
to overcome limitations in the common techniques; these
include polyhedral template matching (Larsen et al., 2016),
Voronoi cell topology (Lazar, 2018), and polyhedral unit model
(Banadaki and Patala, 2017).

As modern machine learning techniques push the limits
of scientific discovery, there are several important lessons to
learn from the deep learning community. The first is the
remarkable discovery that the accuracy of a model can continue
increasing, instead of asymptoting, as more data is added.
That discovery required a universally applicable, generalized
approach to extracting descriptors (i.e., features) from data
using convolutional networks. These lessons should inform our
approach to machine learning in materials. Specifically, given
the availability of algorithms and limited data in GB science, the
important gap to fill is in the creation of universal descriptors that
fully characterize the 3-dimensional GB structure.

Rosenbrock et al. (2017) recently introduced the use of
two new descriptors that help address this gap. The first is
the application of the Smooth Overlap of Atomic Positions
(SOAP) formalism to GBs. Typical applications of SOAP include
accurately modeling potential energy surfaces (Szlachta et al.,
2014; John and Csányi, 2017; Mocanu et al., 2018) and reactivity
(Caro et al., 2018) of molecules (Cisneros et al., 2016) and
solids (De et al., 2016; Sosso et al., 2018), pressure, temperature,
and composition phase diagrams of materials (Baldock et al.,
2016), defects (Dragoni et al., 2018), and dislocations (Maresca
et al., 2018). SOAP is also convenient for characterization of
GBs because it possesses the following desirable properties: (i)
enables comparison between GBs, (ii) is invariant with respect
to structural symmetries, rotations, and permutations, (iii) is
smoothly varying while accommodating structural perturbations,
(iv) is applicable to general, three-dimensional GB structures,
and (v) is amenable to automated characterization and discovery
of structures. Rosenbrock et al. (2017) also introduced a new
descriptor called the local environment representation. This
representation finds unique sets of local environments that are
repeated throughout a set of GBs. In recent work, Priedeman et al.
(2018) used the local environment representation and found that

among 494,495 GB atoms, there were only 55 unique local atomic
environments that were repeated in different combinations and
arrangements to construct all the GBs.

Using these descriptors and their ability to compare
environments, Rosenbrock et al. (2017) appliedmachine learning
to predict both static and dynamic GB properties based on the
static GB structure. The predictions for the static property of GB
energy was the most accurate, which is reasonable considering
that it is a property that is influenced by each atom’s contribution
to the whole energy. For the dynamic properties of mobility
trend and shear coupling, however, the predictions were not as
good, and it was reasoned that longer range information about
atomic structures was likely required to make better predictions.
Since SOAP is a local-environment descriptor, we propose that
an alternative descriptor is necessary to characterize the structure
at multiple scales. Importantly, the characterization metric must
still be automated and satisfy invariance requirements.

We present the scattering transform (ST, Bownik, 1997;
Benedetto and Pfander, 1998; Pfander and Benedetto, 2002;
Benítez et al., 2010; Goh and Lee, 2010; Goh et al., 2011; Lanusse
et al., 2012; Mallat, 2012) as a second, universal descriptor for
GB systems that includes multi-scale features. We present its
ability as a representation to learn energy, mobility, and shear
coupling from GB structures, and compare the results with the
published SOAP methodology. We also compare the results with
a combined representation by SOAP and ST. While the results
indicate that there is room for improvement, we demonstrate
how additional data can improve learning by ST. Finally, we
demonstrate how an inverse ST, using relevance propagation, can
identify key features of the GB structure that are useful for the
machine learned predictions.

2. MATERIALS AND METHODS

2.1. SOAP
To generate the first representation, the averaged SOAP
representation, we create a SOAP descriptor (Bartók et al., 2010;
Bartók et al., 2013) for each atom in the GB. Briefly, the process
of calculating the SOAP descriptor starts by placing a Gaussian
on each local neighbor of a specified atom i.

ρi(Er) =
∑

j

e−(Erij−Er)2/2σ 2atom fcut(|Erij|) (1)

where fcut is a smooth cutoff function that ensures compact
support at radius rcut, and Erij is the vector from atom Eri to Erj.
We define these Gaussians as the species independent neighbor
density of i. To simplify the representation of this neighbor
density it is expanded in an orthonormal basis,

ρi(Er) =
∑

nlm

ci,nlm gn(r)Ylm(r̂), (2)

where gn are an orthonormal radial basis, Ylm are spherical
harmonics, and ci,nlm are the expansion coefficients.

The overlap of two different site environments is defined to be:

S(ρi, ρk) =
∫

ρi(Er)ρk(Er)d3r, (3)
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and is permutationally invariant (because of the sum over the j
neighbors in ρi of Equation 1). Rotational invariance is achieved
by integrating over all rotations of one of its arguments,

K̃(ρi, ρk) =
∫

dR̂ |S(ρi, R̂ρk)|p, (4)

where R̂ is a 3D rotation operator (element of SO(3)), and p
is a small integer, e.g., 2. The value for p loosely defines the
“multi-bodyness” of the expansion, similar to how the power of a
binomial relates to the number of cross-terms in its expansion.
For example, (a + b)2 = a2 + 2ab + b2, where the ab
cross-term shows interaction between a and b. Thus, p =
2 roughly corresponds to 2-body interactions and a value of
p = 4 roughly corresponds to 5-body interactions. A more
complete description for creating SOAP descriptors from local
environments is documented in detail elsewhere (Bartók et al.,
2013; Rosenbrock et al., 2017).

This process has already been efficiently implemented and can
be found in the Python-based pycsoap code1 (Nguyen and
Rosenbrock, to be submitted). Rosenbrock et al. (2018) discusses
selecting atoms to include in the GB and considerations for
tuning parameters.

The difficulty with applying local-environment descriptors
directly is that the method produces an M × N matrix for each
GB, where M is the number of atoms in the GB, and N is the
length of each SOAP vector. Machine learning requires a single
vector describing each data point in the dataset, which motivates
an averaging of this SOAP matrix over the M atoms to produce
the averaged SOAP representation, as defined by Rosenbrock
et al. (2017) and De et al. (2016). While this representation was
referred to as the ASR (for Averaged SOAP Representation) in
previous works (Rosenbrock et al., 2017), we simply refer to it
here as SOAP. In other words, this SOAP vector represents the
average local atomic environment of all the atoms in the GB.
Collecting all these averaged SOAP vectors for a collection of GBs
produces the feature matrix for machine learning.

2.2. Scattering Transform
The ST is similar to a multi-layer, convolutional neural network.
However, instead of using the discrete convolutions typical in
deep learning approaches, based on integer kernel matrices, the
ST uses continuous convolution with wavelet functions. For
a time series signal, the Fourier transform gives information
about the frequency content of the signal. Wavelets, by analogy,
are localized in both time and frequency by defining a scaling
parameter for the wavelet function that limits its extent in time.
The wavelet transform is then executed as a convolution between
the scaled, time-frequency wavelet function and the signal.

The analysis functions for this wavelet transform are
defined as:

ψa,b(t) =
1√
a
ψ

(

t − b

a

)

(5)

1This is available from the Python Package Index using pip install
pycsoap.

where a represents the scale (i.e., large values of a correspond
to “long" basis functions that will identify long-term trends in
the signal to be analyzed) and b represents a shift. The unscaled
wavelet functionψ(t) is usually a bandpass filter. High-frequency
basis functions are obtained by going to small scales; therefore,
scale is loosely related to the inverse frequency. One can choose
shifts and scales to obtain a constant relative bandwidth analysis
known as the wavelet transform. To accomplish this, we use a real
bandpass filter with zero mean.

Then we can define a continuous wavelet transform for an
arbitrary function f (t) as:

f ∗ ψa,b =
∫

R
ψ∗
a,b(t)f (t)dt, (6)

where ψ∗
a,b
(t) represents the complex conjugate of ψa,b(t) and

R is the domain of the signal. This is similar to the Short Time
Fourier Transform but with a variable window. Once again, we
are measuring the similarity between a function, f (t), and of an
elementary function (which is shifted and scaled).

For a multi-dimensional signal, a multi-dimensional wavelet
can be constructed as the Cartesian product between wavelets
defined in each dimension. In other words, the domain for the
function of interest f (t) changes to f (x, y, z), and the convolution
integral is still defined over the domain of f .

Applied to GBs, the 3D ST is computed as a sequence of multi-
dimensional, multi-scale wavelet transforms, interleaved with
non-linear transforms that take the absolute value of their input
signal (i.e., modulus nonlinearities). The process of introducing
these nonlinearities is described below.

The general formulation of the ST used here is depicted
in Figure 1 where a series of layered convolutions are used to
obtain the feature representation. In the first step, and similar
to the SOAP formalism, a Gaussian density is applied to the
atom positions to obtain the density f . When implemented
numerically, some discretization of f is inevitable, the continuous
signals are sampled at a specified resolution (tunable parameter).

In the first layer (0), a Gaussian filter φJ0 (f ) at scale J0 blurs the
density f . The coefficients of the blurred density are subsampled,
averaged, and stored as part of the ST representation. During
subsampling, a discretized vector is sampled at a coarser
resolution to form a smaller vector for the final representation.

To obtain the second layer (1), various wavelet transforms
are applied to f ; the convolutions f ∗ ψj1 ,0 are computed at
various length scales j1 before calculating the modulus (absolute
value) of each of these averaged coefficients as another part of
the ST representation. This modulus operation introduces the
nonlinearities mentioned earlier. After computing the modulus,
we again blur using a Gaussian filter φJ1 (f ) and subsample, this
time at scale J1 and store the resulting coefficients as part of the
scattering representation.

To obtain the third layer (2) another wavelet transform is
applied, yielding

∣

∣f ∗ ψj1 ,0

∣

∣ ∗ ψj2 ,0 for each length scale j2. Each
of these again has the modulus operator applied, is blurred, and
is subsampled to produce coefficients as done in previous layers.
Similar to other convolutional neural networks, this process
could continue for many more layers. Of course, the ability to
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FIGURE 1 | Schematic illustrating the scattering transform. The different layers are formed by systematic applications of the wavelet transform, modulus operator,

Gaussian blur, and subsampling and scaling. Each of these different processes is represented by different colored arrows. The data is collected into a feature vector

for the scattering transform machine learning.

capture the relevant features will depend upon the relative scales
of the atomic structures and the wavelets employed. Once the
scales of the wavelets have been set, these features will not be
affected by including more copies of a periodic structure, like
those often present in GBs. In this respect, the scattering features
are not dependent on increased system size.

The ST produces a 1 × N vector for each GB, where N
is determined by the ST parameters (i.e., chiefly the number
of convolutional layers, the number and scale of the wavelet
functions, and the severity of the subsampling). In contrast to
SOAP, the ST produces a single vector per GB and thus requires

no additional statistical post-processing to produce the feature
vector for the GB.

Given the availability of discrete convolutional neural network
software that is optimized for both CPU andGPU architectures, it
is worth noting why continuous convolutions are worth the extra
implementation effort compared to using discrete convolutions.
Convolutional neural networks in deep learning were developed
to handle image learning tasks, which are inherently discrete due
to pixels in images. Physical systems, like the atomistic view of
GBs, have smooth transitions that are represented more naturally
by spherical harmonics and continuous wavelet functions. While
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it is true that neural network architectures can approximate
curved decision boundaries2, continuous wavelets are a more
natural choice because they lead to a sparser representation (Hirn
et al., 2015, 2017; Eickenberg et al., 2017).

2.3. Grain Boundary Structures and
Properties
The SOAP and the ST are both representations that provide a
feature matrix that is convenient for machine learning of GB
structures. In the present work, we learn on the Olmsted GB
database, which is a collection of 388 computed Ni GBs created
by Olmsted et al. (2009a) using the Foiles-Hoyt embedded atom
method (EAM) potential (Foiles and Hoyt, 2006).

The GB structures were created following standard methods
where a fairly comprehensive list of initial atomic configurations
are each minimized to determine which of all the configurations
represents the minimum energy structure of the GB (Olmsted
et al., 2009a). Using these GB structures, a variety of properties
can be measured or calculated from simulations; for this work,
our interest is in energy, temperature-dependent mobility, and
shear coupling of the 388 GBs.

The GB energy is defined as the excess energy relative to the
bulk as a result of the irregular structure of the atoms in the
GB (Tadmor and Miller, 2011). It is important to note that GB
energy is normally defined as a static property of the system
measured at T = 0K, and all atomistic structures examined in
the machine learning are the T = 0K structures associated with
this calculation. TheGB energies for theOlmstedGB database are
available in the supplemental materials of Olmsted et al. (2009a).
Since the energies for this dataset were calculated using an EAM
potential, learning energies serves merely as a benchmark to
demonstrate whether a given descriptor captures any physically
relevant information useful for machine learning.

Temperature-dependent mobility and shear coupled GB
migration are two dynamic properties related to the behavior
of a migrating GB. The mobility of a GB is defined as the
proportionality factor relating how fast a GB will migrate when
subjected to a given driving force (Gottstein and Shvindlerman,
2010). The temperature-dependent mobility has to do with how
the mobility changes with temperature. In most cases, mobility is
a thermally activated process, where the mobility increases with
increasing temperature. However, in analyzing the temperature-
dependent mobility of the GBs in the Olmsted database (Olmsted
et al., 2009b) and Homer et al. (2014) noticed four broad
categories of temperature-dependent mobility: (i) thermally
activated, (ii) non-thermally activated, (iii) mixed modes, and
(iv) immobile/unclassifiable. These categories correspond with
whether the mobility follows an Arrhenius relationships with
temperature (thermally activated), does not follow an Arrhenius
relationship with temperature (non-thermally activated), shows
some mixed mode combination of thermally activated and non-
thermally activated, or is immobile or simply unclassifiable.

In addition, when GBsmigrate, they can also exhibit a coupled
shear motion, in which the motion of a GB normal to its surface

2The interactive 2D playground at https://playground.tensorflow.org

demonstrates this nicely.

couples with lateral motion of one of the two crystals (Cahn
et al., 2006; Homer et al., 2013). GBs are then classified as either
exhibiting shear coupling or not.

2.4. Machine Learning
The SOAP and ST structure characterizations of the 388 GBs
in the Olmsted database are calculated using the methods
described above. Parameters for these calculations are defined
for the SOAP as the radial basis cutoff (nmax), angular basis
(spherical harmonic) cutoff (lmax), and the radial cutoff (rcut)
which are set to 18, 18 and 5.0 respectively in the present
work. For the ST the parameters are defined as the size of
the density discretization grid (density=0.25), the number
of convolutional layers as seen in Figure 1 (Layers=2, which
also includes Layer 0), a parameter that defines a singular
spherical harmonic angular function (SPH_L=4), the number of
wavelets at different scales used at each layer (n_trans=16),
and the number of angular augmentations in the azimuthal
and polar angles (n_angle1=16, n_angle2=16). An angular
augmentation is when the density function is duplicated and
rotated to form a new density function, which is also fed through
the scattering network. The vectors produced from the rotated
density function are then concatenated to form the final ST
vector. For example, with n_angle1 = 16 and n_angle2 =
16, we end up with 256 copies of the density function, each of
which produces a scattering vector. These are then concatenated
together to produce the final ST vector. This provides a level of
rotational invariance since it is not explicit in the ST.

With both the SOAP and ST providing feature matrices, we
are now able to apply a machine learning approach on the SOAP,
ST, and combined SOAP+ST characterizations of the GBs. The
combined SOAP+ST characterization feature vector is created
by simply concatenating the SOAP and ST vectors together.
Gradient boosted decision trees [as implemented in xgboost
(Chen and Guestrin, 2016)] are used to analyze and predict the
GB energy, temperature-dependent mobility, and shear coupling.

For the machine learning of the properties, it is important to
note that GB energy is a continuous quantity, while temperature
dependent mobility trend and shear coupling are classification
properties. The mobility and shear coupling properties present
an imbalanced class problem, where one class contains many
more samples than the other classes. Consequently, the machine
learning models favor this larger class to minimize error, but
this degrades the ability of the model to generalize to new data.
For example, imagine a binary classification problem where the
training data has 99% in one class and only 1% of the other.
The machine learning model will perform best by just predicting
100% of the first class. Thus to address this issue, we used
the Synthetic Minority Over-sampling Technique (SMOTE),
which is a standard approach used in imbalanced class machine
learning problems (Han et al., 2005), as implemented in the
imblearn package to oversample the minority classes. We can
conceptualize SMOTE by imagining a line segment connecting
each instance of the minority class to every other instance of that
minority class. The algorithm then synthetically creates instances
of the minority class randomly along these line segments and
adds them to the data set, thus oversampling and balancing the
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TABLE 1 | Machine learning % accuracy of different properties by different techniques.

Property SOAP ST SOAP+ST Multi-scale SOAP Random

GB Energy 95 86 93 95 70

Temperature-dependent mobility (3 Class Split) 77 60 69 76 49

Temperature-dependent mobility (4 Class Split) 63 50 61 62 39

Shear coupling 53 53 53 50 52

number of samples in each class. This approach could present
issues if any classes are not separable (e.g., the classes overlap),
but even in these cases SMOTE is expected to improve learning
over simply using the imbalanced classes.

In addition to using SMOTE to address the class imbalance, we
also consider two different splits of the temperature-dependent
mobility. In a 4 class split, we use the four categories as defined
above (Homer et al., 2014). In a 3 class split, we essentially
combined the non-thermally activated and mixed modes into
a single class, such that the three classes are essentially, (i)
thermally activated, (ii) mobile but not thermally activated,
and (iii) immobile/unclassifiable. The original machine learning
on this data by Rosenbrock et al. (2017) used this same
3 class split.

We trained each model with a 50–50 train-test split. While
decision trees have many different tunable hyperparameters, only
the number of estimators (the number of trees) was tuned, using
a process called Early Stopping (Zhang et al., 2005) with 5-
fold cross validation. An ensemble of decision trees is trained
by adding trees in multiple fitting rounds, with each new tree’s
parameters optimized using a loss function. By limiting the
number of fitting rounds, the model will only grow until the
accuracy never improves for the specified number of rounds.
Thus, the optimal number of estimators can be found to
minimize the chance of over-fitting.

3. RESULTS AND DISCUSSION

A summary of the machine learning results of GB energy,
temperature-dependent mobility, and shear coupling by the
SOAP, ST, and Combined SOAP+STmethods is found inTable 1.
To provide a reference against which to judge the machine
learning results, we define a baseline “Random” quantity, as
implemented in the original SOAP formulation (Rosenbrock
et al., 2017). For this “Random” column, energies are drawn
from a normal distribution with the same mean and standard
deviation as the training data and then compared to the actual
values in the validation data. For the mobility and shear coupling
classification, random selection of classes from the training data
are picked and compared against the validation data.

The ST results for energy and temperature-dependent
mobility are statistically better than random and demonstrate
that this new, universal representation is capable of learning
certain GB structure-property relationships. However, it does
not perform as well as the SOAP, and does not improve
predictions even when it is combined with SOAP (SOAP+ST).

Valid predictions are being made, but on different features of the
GB atomic structure.

It is worth noting that the predictions of temperature-
dependent mobility is worse for the 4 class split than the 3 class
split. We attribute this to the reduced number of GBs in each
class on which to learn and then make predictions, and which
aggravates the imbalanced class problem. If our attribution is
correct, this suggests how even a minor increase in data for
each class (e.g., from 4 to 3 classes of the 388 GBs) can have a
significant impact on the learning and prediction ability.

On its own, the ability to predict GB properties using machine
learning has only limited benefits. For example, predicting the
energy of the GBs here is merely an exercise. Computing
energies from structures is not difficult, but predicting the
mobility and shear coupling of a GB is and these properties
have implications for material processing and deformation. Thus,
we desire to use machine learning models to highlight new
physical processes governing these properties. ST was introduced
here because it targets different features of the GB atomic
structure than SOAP. It follows then that each may highlight
different physical processes that contribute to the same structure-
property relationship, an assertion that would be born out by
improvements to the machine learning accuracies.

A comparison of the learning rates is provided in Figure 2. In
this figure it can be seen that the SOAP has better training and test
accuracies than ST. Furthermore, according to the current slopes
of the learning rates, there is no indication, at this point, that ST
will perform better than SOAP. For now, one must conclude that
ST learns different information about the GB structures, and this
information is less helpful for accurate property prediction than
the information provided by SOAP.

Interestingly, the SOAP+ST has the lowest training error,
while having slightly worse test error than SOAP alone. This
is indicative that the information provided by ST is useful in
improving the training accuracy of the model. Unfortunately, the
increase in error from SOAP alone to SOAP+ST indicates that
the additional information provided by ST does not generalize to
accurate property predictions on other GB structures. This would
indicate that the SOAP+ST is suffering from over-fitting.

To understand and interpret these results, it is helpful to
examine the characteristics of the SOAP and ST descriptors.
While SOAP is formally complete in its rotational invariance
(see Equation 4), the ST is formally complete in its translational
invariance due to its convolution integral in Equation (6).
In practice, the rotational invariance for ST is introduced by
augmenting the representation with several discretely rotated
copies of the data. Thus rotational invariance is only approximate
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FIGURE 2 | Learning rates for training and testing of GB energy for the averaged SOAP representation (SOAP), Scattering Transform (ST), and combined SOAP+ST

descriptor. Mean absolute value for the energy across the GB database is about 1.09 J/m2.

for ST, whereas it is formally exact for SOAP. On the
other hand, because ST uses multiple wavelets at different
scales, it formally handles multi-scale translational invariance.
Translational invariance for the SOAP representation originates
in the use of local environments defined relative to a central
atom, though the length-scale is limited by the cutoff radius of
the SOAP descriptor.

The SOAP representation uses spherical harmonics to capture
the angular information in the local environment density
function. For this implementation of ST, we used periodic
spherical harmonic wavelets to capture the periodicity of the
GB structure in the dimensions of the boundary plane. It is
likely that this choice of basis introduced some similarity in the
features extracted by both SOAP and ST, but SOAP remains a
local approach while ST operates at multiple scales.

One could also characterize multiple scales using SOAP by
concatenating multiple SOAP vectors with varying cutoff and
σatom parameters, as has been done in other works (Bartók
et al., 2017; Willatt et al., 2018). At larger radial cutoffs, the
surface area of the sphere for the local environment grows as
r2
cutoff

, which introduces larger distances between atoms at the
surface of the sphere. If the width of the Gaussian density (σatom)
placed at each atom remains small, the angular resolution of the
SOAP expansion cannot distinguish atom densities well. Thus,
increasing the width of the Gaussian at each atom in proportion
to the radial cutoff compensates for this geometrical effect so
that more distant atoms are still resolved well. However, larger
Gaussians placed at neighboring atoms close to the central atom
cause structural information to be washed out. This necessitates
including multiple SOAP vectors at different cutoffs and σatom
values. To demonstrate the effectiveness of this approach, we
compare the accuracy of this method with the others listed in
Table 1. Here it can be seen that the multi-scale SOAP performs

almost equal to standard SOAP, with values slightly worse for
several properties. This also means that it performs better than
ST and SOAP+ST.

While one could conclude from these results that ST does not
provide sufficient improvement to the learning to justify its use,
we believe there are some reasons to withhold judgment. There
are three attributes to the ST that should be considered further.
These are (i) data availability, (ii) interpretability, and (iii) overall
utility as a structural descriptor.

First, concerning data availability, the ST uses layered
convolutional neural networks, which generally provide high
accuracy predictions in machine learning. It is worth noting that
convolutional neural networks are frequently trained with tens of
thousands or more datapoints. It is possible that more data may
simply be required for the convolutional neural network used by
ST to accurately learn GB properties.

One can increase the size of the GB dataset by constructing
additional GB structures, which is time consuming and non-
trivial. Or, one can increase the dataset by simulating existing
GB structures at finite temperatures, where thermal fluctuations
will lead to a large number of similar atomic configurations. We
employ the latter approach in simulations of a 65 (0 1̄ 3)/(0 1̄ 3̄),
〈100〉 symmetric tilt GB at 100 K over 10 ns and generate
1000 configurations, or snapshots, for that GB. If the ST
is used to train a model on some configurations and test
the model on the remaining, ST predicts with low mean
absolute error. For example, with a single GB trained on 250
configurations and tested on the other 750 configurations, a
mean absolute error of 0.002 J/m2 is obtained. On the other
hand SOAP trained on that same data results in a mean absolute
error of 0.0015 J/m2. Thus, with significantly more data ST
improves significantly, though still not better than SOAP in
this case.
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FIGURE 3 | (A) Inverse scattering transform of the 65 (0 1̄ 3)/(0 1̄ 3̄) GB. The

model was trained using only half of the 388 GBs. (B) Inverse scattering

transform of the same GB except that this model was trained using 500

configurations of the same GB. To obtain the configurations, a 10 nanosecond

molecular dynamics simulation was performed at 100 K. Configurations were

extracted every 10 picoseconds. Both models look down the [100] tilt axis of

the crystals. The units for the inverse scattering transform are arbitrary.

The expandedMDdataset demonstrates that ST performs well
with additional data. However, such datasets are moving toward
the realm of “big data.” For example, if one desires to predict
properties for any conceivable GB structure, significantly more
data will be needed to train a general ST model.

The second attribute of ST that is worth discussing is
the interpretability of the results and the ability to learn
the underlying physics surrounding the machine learning
predictions. By using the ST to provide the feature matrix, one
can also perform an inverse scattering transform using relevance
propagation to understand what aspects of the structure are
influencing the learning. Specific details on the application
of relevance propagation to ST is forthcoming (Nguyen, to
be submitted). However, Figure 3 shows heatmaps generated
using relevance propagation for the energy learning task. In
Figure 3Awe show a relevance propagation heatmap for learning
of GB energy using a 50/50 split of the Olmsted database
(i.e., the learning task reported in Table 1). Contrast that with
the relevance propagation heatmap in Figure 3B where energy
was learned from 500/500 split of the MD configurations
noted above. In comparing the two images it is clear that
Figure 3A highlights a seemingly random selection of atoms
that are not consistent with the symmetry of the periodic
structure of the GB. In Figure 3B, the well-known kite structure
from the structural unit model is highlighted, despite the fact
that the model had no knowledge of this structure a priori.
Thus, the inverse ST relevance propagation heatmaps may
allow one to identify the relevant features of the GB structure

that correlate with the property of interest. The heatmaps in
Figure 3 would be different for each property even though the
structure of the GB might be the same. This could be crucial
to the identification of the relevant features of the GB structure
controlling different properties.

Furthermore, while Rosenbrock et al. (2017) demonstrated
that a derived form of SOAP, called the local environment
representation, provides a way to interpret relevant GB
structures, SOAP itself can be difficult to interpret. The
multi-scale SOAP, which can provide longer range structural
information, would be more difficult than SOAP by itself. Thus,
while ST may not lead to the highest prediction values, its
interpretability through the relevance propagation may render it
a useful tool.

The overall utility as a structural descriptor is the third
attribute of ST that is worth considering. To consider this
we compare ST to a range of structural descriptors and
their properties.

In Table 2 we summarize descriptors introduced for
characterizing GBs, and from which machine learning models
could be built. In addition to the metrics described in this work
we also compare attributes against the structural unit model
(SUM), dislocation arrays (DA), common neighbor analysis
(CNA), polyhedral template matching (PTM), Voronoi cell
topology (VCT), and the polyhedral unit model (PUM), all of
which were mentioned in the introduction.

We judge each descriptor based on its usefulness across
several metrics. The properties of interest are: Easily Visualized -
one can convey the structures through visual means, Easily
Interpreted–one can easily identify the relevant characteristics
and differences between structures, Comparison - one can
quantitatively compare the structures to one another, Invariance–
the characterization is invariant to rotations, permutations,
and/or translations, Perturbations–perturbations in the structure
are captured as small changes in the metric, Smoothly Varying–
the metric is continuous and varies smoothly for larger changes
in structure, 3D GB Structures–the characterization works
for quasi-2D and complex 3D GB structures, Automation–
the characterization process can be automated, Connectivity–
the technique characterizes how all the atoms in the GB are
connected, Multi-scale–the technique characterizes both short-
and long-range structural information, Subunit Discovery–the
technique does not require a preset list of structures, it can
discover them on its own.

While there are notable things about each descriptor and some
of the entries in Table 2 are subjective, we will focus on a few
properties of interest. In particular, we’ll focus on a few of the
properties not present in SOAP.

First, the ability to automate the description is an essential
requirement to move GB science into the big data age. This
property is shared by many. Second, is the ability to provide

multi-scale characterization. Many techniques possess this ability
if the researcher knows what they are doing, but ST is the only

technique that possesses this inherently. Third and fourth are

easily visualized and interpreted, which are two properties that
are more subjective. Neither of these properties is a strength of
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TABLE 2 | Comparison of structural descriptors and their properties.

Property SUM DA CNA PTM VCT PUM SOAP LER ST

Easily visualized X X X X X X X X

Easily interpreted X X X X X X R X

Comparison X X X X X X X X

Invariance R X X X X X X X

Perturbations R X X X X X X

Smoothly varying X X X

3D GB structures X X X X X X X

Automation X X X X X X X

Connectivity R R R

Multi-scale R R R X

Subunit discovery R R X

The structural unit model is abbreviated as SUM, dislocation arrays as DA, common neighbor analysis as CNA, polyhedral template matching as PTM, Voronoi cell topology as VCT,
polyhedral unit model as PUM, averaged SOAP representation as SOAP, local environment representation as LER, and scattering transform as ST. A check mark (X) indicates that the
descriptor exhibits a particular property. ‘R’ indicates that the researcher using the tool is largely responsible for whether or not the atomic structure description has a particular property
or not (since that property is extracted manually).

SOAP3, but both could be a strengths of ST as evidenced by the
heatmaps in Figure 3. Sixth is connectivity. ST does not possess
this outright as one might consider in the structural unit model
or in a graph description. However, it should be noted that while
Figure 3 colors each of the atoms by their relevance in predicting
energy, the continuous nature of ST and the inverse ST means
that relevance scores are available continuously throughout the
space; one could produce high resolution heatmaps. Having a
detailed 3D “importance density” for a grain boundary would
allow connectivity values between a graph of nearest-neighbor
atoms to be quantified (for example by integrating the density
along the path connecting the atoms). These edge weights in
the connectivity graph could be thresholded to provide alternate
views of connectivity. This definition of connectivity is somewhat
different from the traditional definition. The heatmaps also
change based on the property of interest rather than being
static. That in turn, may be more useful for discovering the
physical underpinnings on structure-property relationships. This
approach might also allow one to fulfill the final property of
subunit discovery. Again, this isn’t currently present in ST, but
one could imagine how the inverse ST heatmaps might enable
this property.

Considering these three attributes of ST, there is reason to
believe that the ST, or something very similar, might become
an important descriptor for GB data science. However, given
the evidence presented here, one must proceed with caution,
and consider other ways to achieve the same goals of encoding
the most useful information about GB structures for property
prediction and discovery of the underlying physics.

3SOAP can lends itself to interpretation by either (i) optimizing a reference

structure by minimizing the kernel metric distance, much like the local

environment representation, or (ii) applying relevance propagation to the SOAP

vector. However, the first approach provides only a local analog and the second

approach suffers information loss due to the angular integral. Thus, while certainly

useful, the inverse SOAP operations do not have the same global resolution as an

inverse scattering transform.

4. CONCLUSION

The success of machine learning in GB data science will largely
be guided by the development of tools that capture the physical
essence of GB structure-property relationships. These tools must
be automated and universally applicable to large and complex GB
structures. Since the machine learning is merely a stepping stone
to discovery of the underlying physics, these tools should also
satisfy certain mathematical constraints related to invariances
and smoothness.

We introduced a new descriptor, the Scattering Transform
(ST) (Bownik, 1997; Benedetto and Pfander, 1998; Pfander
and Benedetto, 2002; Benítez et al., 2010; Goh and Lee, 2010;
Goh et al., 2011; Lanusse et al., 2012; Mallat, 2012), based
on continuous, multi-scale wavelet transforms interleaved with
modulus nonlinearities. We showed that this descriptor can
effectively learn GB structure-property relationships for energy
and does reasonably well for temperature-dependent mobility. It
should be noted that the SOAP descriptor surpassed the ST in
prediction accuracy and remains the optimal descriptor for the
properties and structures compared here.

However, we also demonstrated that despite its inability
to achieve the same accuracy predictions as SOAP, ST has
complimentary features that may make it a useful descriptor of
GB structure. First off, the ST information content is different
than and complementary to that of the SOAP descriptor. The
ST has the ability to encode multi-scale structural information
and be visualized using an inverse ST that generates a heatmap.
Importantly, the inverse ST provides evidence of the prevailing
wisdom that multi-level convolutional networks require large
amounts of data in order to truly learn the physics underlying
structure-property relationships. This helps contextualize the
performance of ST relative to the averaged SOAP representation
and other SOAP-based representations. It also motivates the
building of much larger GB databases.

The ST has the potential to be a powerful tool in
understanding GB structure-property relationships. As we
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continue to push the limits of our understanding in GB structure-
property relationships it will be most valuable to (i) focus on
building larger databases of GB structure-property mappings,
which currently represents the greatest limitation, and (ii)
continue to introduce new descriptors that satisfy as many of the
desirable characteristics as possible.
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